首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Astronomy Letters - We present our photometric observations of the 15 supernovae (SN) discovered in the period 1997–1999; of these, six are type Ia SN, two are peculiar type Ia SN, three are...  相似文献   

2.
A set of well-measured, {low-z}, type Ia supernovae from the Calán/Tololo SNe data sets is used to determine benchmark parameters in our hydrodynamics-based, light-curve model. The light-curve data fit fairly well in B, V, and R passbands but not as well in the I passband. The fitting procedure, extracted best-fit model parameters, and their connection to type Ia SN parameters are presented. Our benchmarked light-curve model represents an alternative to empirical template methods for the analysis of light-curve data.  相似文献   

3.
SN 2011fe was the nearest and best-observed type Ia supernova in a generation, and brought previous incomplete datasets into sharp contrast with the detailed new data. In retrospect, documenting spectroscopic behaviors of type Ia supernovae has been more often limited by sparse and incomplete temporal sampling than by consequences of signal-to-noise ratios, telluric features, or small sample sizes. As a result, type Ia supernovae have been primarily studied insofar as parameters discretized by relative epochs and incomplete temporal snapshots near maximum light. Here we discuss a necessary next step toward consistently modeling and directly measuring spectroscopic observables of type Ia supernova spectra. In addition, we analyze current spectroscopic data in the parameter space defined by empirical metrics, which will be relevant even after progenitors are observed and detailed models are refined.  相似文献   

4.
The distributions of supernovae of different types and subtypes along the radius and in z coordinate of galaxies have been studied. We show that among the type Ia supernovae (SNe Ia) in spiral galaxies, SNe Iax and Ia-norm have, respectively, the largest and smallest concentration to the center; the distributions of SNe Ia-91bg and Ia-91T are similar. A strong concentration of SNe Ib/c to the central regions has been confirmed. In spiral galaxies, the supernovae of all types strongly concentrate to the galactic plane; the slight differences in scale height correlate with the extent to which the classes of supernovae are associated with star formation.  相似文献   

5.
This paper describes a Monte Carlo simulation of type Ia supernova data. It was shown earlier that the data of SNe Ia might contain a possible correlation between the estimated luminosity distances and internal extinctions. This correlation was shown by different statistical investigations of the data. In order to remove observational biases (for example the effect of the detection limit of the observing instrument) and to test the reality of the effect found earlier we developed a simple routine which simulates extinction values, redshifts and absolute magnitudes for Ia supernovae. We pointed out that the correlation found earlier in the real data between the internal extinction and luminosity distance does not occur in the simulated sample. Furthermore, it became obvious that the detection limit of the observing devices used in supernova projects does not affect the far end of the redshift‐luminosity distance relationship of Ia supernovae. This result strengthens the earlier conclusions of the authors that SN Ia supernovae alone do not support the existence of dark energy. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The absolute luminosities and homogeneity of early-time infrared (IR) light curves of type Ia supernovae are examined. Eight supernovae are considered. These are selected to have accurately known epochs of maximum blue light as well as having reliable distance estimates and/or good light curve coverage. Two approaches to extinction correction are considered. Owing to the low extinction in the IR, the differences in the corrections via the two methods are small. Absolute magnitude light curves in the J , H and K bands are derived. Six of the events, including five established 'branch-normal' supernovae, show similar coeval magnitudes. Two of these, supernovae (SNe) 1989B and 1998bu, were observed near maximum infrared light. This occurs about 5 d before maximum blue light. Absolute peak magnitudes of about −19.0, −18.7 and −18.8 in J , H and K respectively were obtained. The two spectroscopically peculiar supernovae in the sample, SNe 1986G and 1991T, also show atypical IR behaviour. The light curves of the six similar supernovae can be represented fairly consistently with a single light curve in each of the three bands. In all three IR bands the dispersion in absolute magnitude is about 0.15 mag, and this can be accounted for within the uncertainties of the individual light curves. No significant variation of absolute IR magnitude with B -band light curve decline rate, Δ m 15( B ), is seen over the range 0.87<Δ m 15( B )<1.31. However, the data are insufficient to allow us to decide whether or not the decline rate relation is weaker in the IR than in the optical region. IR light curves of type Ia supernovae should eventually provide cosmological distance estimates that are of equal, or even superior, quality to those obtained in optical studies.  相似文献   

7.
It has been suggested that the differences among the observational Type Ia supernovae (SNIa) set can be accounted for by invoking two regimes of propagation of combustion. Normal SNIa should be produced by rapid deflagrations that rapidly propagate across a white dwarf, while dim SNIa should be a consequence of a detonation issued during the contraction phase of a pulsation induced by a very slow conductive deflagration. In this paper, we explore the observational consequences of deflagrations, the properties of which are in between both behaviours. Using different laws for the flame velocity as a function of flame radius, a number of different outcomes were found, including direct explosions ejecting small quantities of 56Ni, pulsations leading to recontraction and likely reignition of the flame, and a threshold explosion characterized by an extended gravitationally bound phase (several 103 s), in which most of the white dwarf matter was ejected by the energy input of radioactive isotopes.
Not one of these strange supernovae has been detected up to now. Nevertheless, since they are very dim and, for nucleosynthesis reasons, very rare, their existence cannot be excluded. Furthermore, the computed light curve shows that these events mimic the behaviour of peculiar Type II supernovae (SNII), for which reasons there is always the possibility that they have been misclassified as peculiar SNII whose spectrum is lacking.  相似文献   

8.
The observational cosmology with distant Type Ia supernovae (SNe) as standard candles claims that the Universe is in accelerated expansion, caused by a large fraction of dark energy. In this paper we investigate the SN Ia environment, studying the impact of the nature of their host galaxies on the Hubble diagram fitting. The supernovae (192 SNe) used in the analysis were extracted from Joint-Light-curves-Analysis (JLA) compilation of high-redshift and nearby supernovae which is the best one to date. The analysis is based on the empirical fact that SN Ia luminosities depend on their light curve shapes and colors. We confirm that the stretch parameter of Type Ia supernovae is correlated with the host galaxy type. The supernovae with lower stretch are hosted mainly in elliptical and lenticular galaxies. No significant correlation between SN Ia colour and host morphology was found. We also examine how the luminosities of SNe Ia change depending on host galaxy morphology after stretch and colour corrections. Our results show that in old stellar populations and low dust environments, the supernovae are slightly fainter. SNe Ia in elliptical and lenticular galaxies have a higher α (slope in luminosity-stretch) and β (slope in luminosity-colour) parameter than in spirals. However, the observed shift is at the 1-σ uncertainty level and, therefore, can not be considered as significant. We confirm that the supernova properties depend on their environment and that the incorporation of a host galaxy term into the Hubble diagram fit is expected to be crucial for future cosmological analyses.  相似文献   

9.
A special law of variation for Hubble’s parameter is presented in a spatially homogeneous and anisotropic Bianchi type-I space-time that yields a constant value of deceleration parameter. Using the law of variation for Hubble’s parameter, exact solutions of Einstein’s field equations are obtained for Bianchi-I space-time filled with perfect fluid in two different cases where the universe exhibits power-law and exponential expansion. It is found that the solutions are consistent with the recent observations of type Ia supernovae. A detailed study of physical and kinematical properties of the models is carried out.  相似文献   

10.
Supernova rates (hypernova, type II, type Ib/c and type Ia) in a particular galaxy depend on the metallicity (i.e. on the galaxy age), on the physics of star formation and on the binary population. In order to study the time evolution of the galactic supernova rates, we use our chemical evolutionary model that accounts in detail for the evolution of single stars and binaries. In particular, supernovae of type Ia are considered to arise from exploding white dwarfs in interacting binaries and we adopt the two most plausible physical models: the single degenerate model and the double degenerate model. Comparison between theoretical prediction and observations of supernova rates in different types of galaxies allows to put constraints on the population of intermediate mass and massive close binaries.

The temporal evolution of the absolute galactic rates of different types of supernovae (including the type Ia rate) is presented in such a way that the results can be directly implemented into a galactic chemical evolutionary model. Particularly for type Ia’s the inclusion of binary evolution leads to results considerably different from those in earlier population synthesis approaches, in which binary evolution was not included in detail.  相似文献   


11.
We present the results of a study of selection criteria to identify Type Ia supernovae photometrically in a simulated mixed sample of Type Ia supernovae and core collapse supernovae. The simulated sample is a mockup of the expected results of the Dark Energy Survey. Fits to the MLCS2k2 and SALT2 Type Ia supernova models are compared and used to help separate the Type Ia supernovae from the core collapse sample. The Dark Energy Task Force Figure of Merit (modified to include core collapse supernovae systematics) is used to discriminate among the various selection criteria. This study of varying selection cuts for Type Ia supernova candidates is the first to evaluate core collapse contamination using the Figure of Merit. Different factors that contribute to the Figure of Merit are detailed. With our analysis methods, both SALT2 and MLCS2k2 Figures of Merit improve with tighter selection cuts and higher purities, peaking at 98% purity.  相似文献   

12.
We propose a new chemical evolution model aimed at explaining the chemical properties of globular clusters (GCs) stars. Our model depends upon the existence of (i) a peculiar pre-enrichment phase in the GC's parent galaxy associated with very low-metallicity Type II supernovae (SNe II) and (ii) localized inhomogeneous enrichment from a single Type Ia supernova (SN Ia) and intermediate-mass  (4–7 M)  asymptotic giant branch field stars. GC formation is then assumed to take place within this chemically peculiar region. Thus, in our model the first low-mass GC stars to form are those with peculiar abundances (i.e. O-depleted and Na-enhanced), while 'normal' stars (i.e. O-rich and Na-depleted) are formed in a second stage when self-pollution from SNe II occurs and the peculiar pollution from the previous phase is dispersed. In this study, we focus on three different GCs: NGC 6752, 6205 (M 13) and 2808. We demonstrate that, within this framework, a model can be constructed which is consistent with (i) the elemental abundance anticorrelations, (ii) isotopic abundance patterns and (iii) the extreme [O/Fe] values observed in NGC 2808 and M 13, without violating the global constraints of approximately unimodal [Fe/H] and C+N+O.  相似文献   

13.
The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. There is a wide agreement that high amounts of radioactive nuclei are produced during these events and they are expected to be strong γ-ray emitters. In the past, several authors have investigated the use of this γ-ray emission as a diagnostic tool. In this paper we have performed a complete study of the γ-ray spectra associated with all the different scenarios currently proposed. This includes detonation, delayed detonation, deflagration and the off-centre detonation. We have performed accurate simulations for this complete set of models in order to determine the most promising spectral features that could be used to discriminate among the different models. Our study is not limited to qualitative arguments. Instead, we have quantified the differences among the spectra and established distance limits for their detection. The calculations have been performed considering the best current response estimations of the SPI and IBIS instruments aboard INTEGRAL in such a way that our results can be used as a guideline to evaluate the capabilities of INTEGRAL in the study of Type Ia supernovae. For the purpose of completeness we have also investigated the nuclear excitation and spallation reactions as a possible secondary source of γ-rays present in some supernova scenarios. We conclude that this mechanism can be neglected because of its small contribution.  相似文献   

14.
A special class of type Ia supernovae that is not subject to ordinary and additional intragalactic gray absorption and chemical evolution has been identified. Analysis of the Hubble diagrams constructed for these supernovae confirms the accelerated expansion of the Universe irrespective of the chemical evolution and possible gray absorption in galaxies.  相似文献   

15.
We estimate the Solar system motion relative to the cosmic microwave background using Type Ia supernovae (SNe) measurements. We take into account the correlations in the error bars of the SNe measurements arising from correlated peculiar velocities. Without accounting for correlations in the peculiar velocities, the SNe data we use appear to detect the peculiar velocity of the Solar system at about the 3.5σ level. However, when the correlations are correctly accounted for, the SNe data only detect the Solar system peculiar velocity at about the 2.5σ level. We forecast that the Solar system peculiar velocity will be detected at the 9σ level by GAIA and the 11σ level by the Large Synoptic Survey Telescope. For these surveys, we find the correlations are much less important as most of the signal comes from higher redshifts where the number density of SNe is insufficient for the correlations to be important.  相似文献   

16.
Variations in the mass loss from single stars have been used to explain the existence of hot subdwarf stars and the existence of single low-mass white dwarfs (LMWDs). Hence remaining uncertainty in mass loss from single red-giant stars is important to the understanding of these problems. However, natural formation channels for hot subdwarfs and single LMWDs have also been proposed which do not rely on unexplained mass loss from single red-giant stars. We outline these, and discuss how the different mechanisms could be distinguished. For example, a formation channel for single LMWDs which involves the break-up of a binary system by a type Ia supernova should produce a population of single LMWDs with a distinct kinematic signature. If that population is found to exist, it could be used to study one of the popular single-degenerate formation channels for type Ia supernovae in a previously impossible way. In addition, we examine the formation of helium-rich sdO stars—which are shown to emerge from one of the previously existing binary formation channels for hot subdwarfs. Both the SN Ia formation mechanism for single LMWDs and the formation channel for He-sdOs are a natural consequence of existing models. Hence if these formation channels do not work at all, then the result is a significant one.  相似文献   

17.
We constrain the Cardassian expansion models from the latest observations,including the updated Gamma-ray bursts (GRBs),which are calibrated using a cosmology independent method from the Union2 compilation of type Ia supernovae (SNe Ia).By combining the GRB data with the joint observations from the Union2 SNe Ia set,along with the results from the Cosmic Microwave Background radiation observation from the seven-year Wilkinson Microwave Anisotropy Probe and the baryonic acoustic oscillation observation galax...  相似文献   

18.
The time delay between the formation of the progenitor systems of Type Ia supernovae (SNe Ia) and their detonation is a vital discriminant between the various progenitor scenarios that have been proposed for them. We use Sloan Digital Sky Survey optical and Galaxy Evolution Explorer ( GALEX ) ultraviolet observations of the early-type host galaxies of 21 nearby SNe Ia and quantify the presence or absence of any young stellar population to constrain the minimum time delay for each supernova. We find that early-type host galaxies lack 'prompt' SNe Ia with time delays of ≲100 Myr and that ∼70 per cent SNe Ia have minimum time delays of 275 Myr–1.25 Gyr, with a median of 650 Myr, while at least 20 per cent SNe Ia have minimum time delays of at least 1 Gyr at 95 per cent confidence and two of these four SNe Ia are likely older than 2 Gyr. The distribution of minimum time delays observed matches most closely the expectation for the single-degenerate channel with a main sequence donor. Furthermore, we do not find any evidence that subluminous SNe Ia are associated with long time delays.  相似文献   

19.
A new class of dark energy models in a Locally Rotationally Symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the present paper. The Einstein’s field equations have been solved by applying a variation law for generalized Hubble’s parameter given by Berman: Nuovo Cimento 74:182 (1983) which generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The dark energy EoS parameter ω is found to be time dependent and its existing range for both models is in good agreement with the three recent observations of (i) SNe Ia data (Knop et al.: Astrophys. J. 598:102 (2003)), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al.: Astrophys. J. 606:702 (2004)) and latest (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al.: Astrophys. J. Suppl. 180:225 (2009); Komatsu et al. Astrophys. J. Suppl. 180:330 (2009)). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric behaviour of the universe have also been discussed in detail.  相似文献   

20.
In the chemical evolution of the Galaxy, Type II supernovae (SNe II)have contributed to the early metal enrichment and later Type Iasupernovae (SNe Ia) have contributed to the delayed enrichment of Fe.In principle, hypothetical pre-galactic population III objects couldcause the earliest heavy element enrichment. Here we present our twonew findings. 1) The peculiar abundance pattern among iron peakelements (Cr, Mn, Co, and Fe) in the very metal poor can be reproducedwith SN II nucleosynthesis yields without invoking the contributionfrom Pop III objects. 2) The observed chemical evolution in the solarneighborhood is well reproduced with the metallicity dependentoccurrence of SNe Ia, where SNe Ia do not occur if the iron abundanceof the progenitors is as low as [Fe/H] ≲ -1. We make theprediction that the cosmic SN Ia rate drops at z ∼ 1-2 because ofthe low-iron abundance, which can be observed with the Next GenerationSpace Telescope. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号