首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Data on bottom-water potential temperature, turbidity and current indications show that in the Southern Ocean west of the Kerguelen Plateau, Antarctic Bottom Water (AABW) of Weddell Sea origin spreads northwards from the Atlantic—Indian Basin in two directions: (1) AABW enters the Agulhas Basin through relatively deep areas in the Mid-Indian Ridge at 20–25°E and possibly at 35°E, and flows northwards into the Mozambique Basin as far as its northern limits; (2) a more easterly spreading path extends from the Atlantic—Indian Basin through the Crozet into the Madagascar, Mascarene, Somali and Arabian Basins. The passage in the western branch of the Indian Ridge for the AABW spreading from the Crozet into the Madagascar Basin appears to be at 29-26°S and 60–64°E.East of the Kerguelen Plateau in the South Indian Basin, the bottom water formed mainly along the Adélie Coast and Ross Sea travels west towards the Kerguelen Plateau and then parallel to it. This water finally flows eastwards hugging the Southeast Indian Ridge. Significant deviations from this general circulation pattern occur due to local topographic effects. Some AABW in the South Indian Basin exits through a passage at 120–125°E in the region of the Australian—Antarctic discordance in the Southeast Indian Ridge and enters the South Australian Basin and subsequently the Wharton Basin. This passage is clearly indicated by the northward extension of a cold, bottom-water tongue as shown by the temperature distribution in the region; the bottom-water effects in the passage are reflected in the high turbidity and current lineations on the sea floor.In the Southern Ocean basins, bottom-water turbidity is generally high, reflecting in part the strong bottom-water activity. The effects of AABW circulation on the sea floor—in the form of well-developed small- or large-scale current ripples and erosional/depositional features, manganese-nodule formations, and unconformities and reworking of sediments observed in cores — are also marked in these basins. Even though the AABW in the Wharton Basin is cold, its spreading effects on the sea floor are minimal in this basin in contrast to the basins west of the Mid-Indian Ridge at comparable latitudes.  相似文献   

2.
The geologic history of the eastern Indian Ocean between northwest Australia and the Java Trench is known to involve two separate events of rifting and sea-floor spreading. Late Jurassic spreading in the Argo Abyssal Plain off northwest Australia was followed by Early Cretaceous spreading in the Cuvier and Perth Abyssal Plains off west Australia. However, the evolution and interaction of these events has not been clear. Mesozoic sea-floor spreading anomalies have been identified throughout the Argo Abyssal Plain that define a rifting event and subsequent northward spreading on the northwestern Australian margin at 155 m.y.b.p. Magnetic anomalies northwest of the Argo Abyssal Plain indicate a ridge jump to the south at about 130 m.y.b.p. that is approximately synchronous with east-west rifting along the southwestern Australian margin. The Joey Rise in the Argo Plain was probably formed by volcanism at the intersection of this new rift and the spreading ridge to the north. The southern and northern spreading systems were connected through the Exmouth Plateau which was stretched and faulted as spreading progressed. The RRR triple junction was formed at the intersection of the two spreading systems and appears to have migrated west along the northern edge of the Gascoyne Abyssal Plain. Spreading off northwest Australia cannot be easily related to simultaneous spreading in the west central Pacific via any simple tectonic scheme.  相似文献   

3.
The Mascarene Plateau lies in the south-west Indian Ocean between the islands of Mauritius and the Seychelles Bank, and is characterised by a series of shallow banks separated by deep (>1 000 m), narrow channels. The plateau acts as an obstruction to the general ocean circulation in this region, separating the westward-flowing South Equatorial Current (SEC) into two branches downstream of the plateau. In this article, we present the results of a survey conducted along the entire Mascarene Plateau during the Northeast Monsoon, in October–November 2008. In addition, data from Argo floats were used to determine the origin of water masses entering this region. The plateau contains three gaps through which branches of the SEC are channelled. The northern, central and southern gaps receive 14.93 Sv, 14.41 Sv and 6.19 Sv, respectively. Although there are differences in water-mass properties to the west and east of the Mascarene Plateau due to mixing, the SEC acts as a sharp boundary between water masses of southern and northern Indian Ocean origin. Mixing occurs in the central gap between intermediate water masses (Red Sea Water [RSW] and Antarctic Intermediate Water [AAIW]) as well as in the upper waters (Subtropical Surface Water [STSW] and Indonesian Throughflow Water [ITW]). Through the northern gap, mixing occurs between Arabian Sea High-Salinity Water (ASHSW), ITW and Tropical Surface Water (TSW), while through the southern gap, mixing occurs between STSW and ITW. North Indian Deep Water (NIDW) is present in the region but the plateau appears to have no effect on it.  相似文献   

4.
Massive, transient late syn-rift-to-breakup volcanism during separation between the Seychelles microcontinent and India formed the Deccan continental flood basalts and their equivalents on the Seychelles-Mascarene Plateau and on the conjugate continental margins, i.e. the Deccan Large Igneous Province. We estimate an original extrusive area of at least 1.8×106 km2, and a volume >1.8×106 km3, and suggest a plate tectonic model comprising: (1) development of the Seychelles microplate by fan-shaped spreading in the Mascarene Basin, and continental extension followed by fan-shaped spreading between India and the Seychelles during A29-27 time. (2) Cessation of fan-shaped spreading just after A27 time, followed by spreading along the India-Seychelles plate boundary. (3) Margin subsidence, modified south of Goa by the persistent, time-transgressive effects along the plume trail. The margin is divided into three regional provinces by the prolongation of regional transforms which formed the east and west boundaries of the Seychelles microplate during breakup and early sea floor spreading. In some aspects, the conjugate margins are different from other volcanic margins; e.g. regional wedges of seaward dipping reflectors along the continent-ocean transition have not yet been reported. We ascribe this to the eruption of the most voluminous lavas during chron 29r, i.e on continental lithosphere in a late syn-rift setting. The enigmatic Laxmi Ridge is a complex marginal high comprised of both continental and oceanic crust. It was probably created during breakup, but may have experienced later magmatic and/or tectonic deformation.  相似文献   

5.
Magnetic and bathymetric studies on the Konkan basin of the southwestern continental margin of India reveal prominent NNW-SSE, NW-SE, ENE-WSW, and WNW-ESE structural trends. The crystalline basement occurs at about 5–6 km below the mean sea level. A mid-shelf basement ridge, a shelf margin basin, and the northern extension of the Prathap Ridge complex are also inferred. The forces created by the sea-floor spreading at Carlsberg Ridge since late Cretaceous appears to shape the present-day southwestern continental margin of India and caused the offsets in the structural features along the preexisting faults.  相似文献   

6.
The location of the India-Arabia plate boundary prior to the formation of the Sheba ridge in the Gulf of Aden is a matter of debate. A seismic dataset crossing the Owen Fracture Zone, the Owen Basin, and the Oman Margin was acquired to track the past locations of the India-Arabia plate boundary. We highlight the composite age of the Owen Basin basement, made of Paleocene oceanic crust drilled on its eastern part, and composed of pre-Maastrichtian continental and oceanic crust overlaid by ophiolites emplaced in Early Paleocene on its western side. A major fossil transform fault system crossing the Owen Basin juxtaposed these two slivers of lithosphere of different ages, and controlled the uplift of marginal ridges along the Oman Margin. This transform system deactivated ∼40 Myrs ago, coeval with the onset of ultra-slow spreading at the Carlsberg Ridge. The transform boundary then jumped to the edge of the present-day Owen Ridge during the Late Eocene-Oligocene period, before seafloor spreading began at the Sheba Ridge. This migration of the plate boundary involved the transfer of a part of the Indian oceanic lithosphere formed at the Carlsberg Ridge to Arabia. This Late Eocene-Oligocene tectonic episode at the India-Arabia plate boundary is synchronous with a global plate reorganization event corresponding to geological events at the Zagros and Himalaya belts. The Owen Ridge uplifted later, in Late Miocene times, and is unrelated to any major migration of the India-Arabia boundary.  相似文献   

7.
Six major seismic stratigraphic sequences in the Raggatt Basin on the southern Kerguelen Plateau overlie a basement complex of Cretaceous or greater age. The complex includes dipping reflectors which were apparently folded and eroded before the Raggatt Basin developed. The seismic stratigraphic sequences include a basal unit F, which fills depressions in basement; a thick unit, E, which has a mounded upper surface (volcanic or carbonate mounds); a depression-filling unit, D; a thick unit C which is partly Middle to Late Eocene; and two post-Eocene units, A and B, which are relatively thin and more limited in areal extent than the underlying sequences. A mid or Late Cretaceous erosional episode was followed by subsidence and basin development, interrupted by major erosion in the mid Tertiary. Late Cenozoic sedimentation was affected by vigorous ocean currents.  相似文献   

8.
Submersible observations and photogeology document dramatic variations in the distribution of young volcanic rocks, faulting, fissuring, and hydrothermal activity along an 80 km-long segment of the Mid-Atlantic Ridge south of the Kane Transform (MARK Area). These variations define two spreading cells separated by a cell boundary zone or a small-offset transform zone. The northern spreading cell is characterized by a median ‘neovolcanic’ ridge which runs down the axis of the median valley floor for 40 km. This edifice is as much as 4 km wide and 600 m high and is composed of very lightly sedimented basalts inferred to be < 5000 years old. It is the largest single volcanic constructional feature discovered to date on the Mid-Atlantic Ridge. The active Snake Pit hydrothermal vent field is on the crest of this ridge and implies the presence of a magma chamber in the northern spreading cell. In contrast, the southern cell is characterized by small, individual volcanos similar in size to the central volcanos in the FAMOUS area. Two of the volcanos that were sampled appear to be composed of dominantly glassy basaltic rocks with very light sediment cover; whereas, other volcanos in this region appear to be older features. The boundary zone between the two spreading cells is intensely faulted and lacks young volcanic rocks. This area may also contain a small-offset ( < 8 km) transform zone. Magmatism in the northern cell has been episodic and tens of thousands of years have lapsed since the last major magmatic event there. In the southern cell, a more continuous style of volcanic accretion appears to be operative. The style of spreading in the southern cell may be much more typical for the Mid-Atlantic Ridge than that of the northern cell because the latter is adjacent to the 150 km-offset Kane Transform that may act as a thermal sink along the MAR. Such large transforms are not common on the MAR, therefore, lithosphere produced in a spreading cell influenced by a large transform may also be somewhat atypical.  相似文献   

9.
Geophysical data on the northern part of the Pacific Ocean were systematized to compile a map of geomagnetic and geothermal studies of the Bering Sea. The absence of reliable data about the formation time of the Bering Sea structures of oceanic and continental origins is noted; this hampered the assessment of the geodynamical processes in the North Pacific. Based on the geophysical data, we estimated the age of the structures of the Bering Sea floor such as the Commander Basin (21 My), the Shirshov Ridge (95 and 33 My in the northern and southern parts, respectively), the Aleutian Basin (70 My), the Vitus Arch (44 My), the Bowers Ridge (30 My), and the Bowers Basin (40 My). These values are confirmed by the geological, geophysical, and kinematic data. A numerical modeling of the formation of extensive regional structures (Emperor Fracture Zone, Chinook Trough, and others) in the Northern Pacific is carried out. A conclusion was made on the basis of the geological and geothermal analysis that the northern and southern parts of the Shirshov Ridge have different geological ages and different tectonic structures. The northern part of the ridge is characterized by an upthrust-nappe terrain origin, while the southern part has originated from a torn-away island arc similar to the origin of the Bowers Ridge. The sea floor of the Aleutian Basin represents a detached part of the Upper Cretaceous Kula plate, on which spreading processes took place in the Vitus Arch area in the Eocene. The final activity phase in the Bering Sea began 21 My B.P. by spreading of the ancient oceanic floor of the Commander Basin. Based on the age estimations of the structures of the Bering Sea floor, the results of the modeling of the process of formation of regional fracture zones and of the geomagnetic, geothermal, tectonic, geological, and structural data, we calculated and compiled a kinematic model (with respect to a hot spot reference system) of the northern part of the Pacific Ocean for 21 My B.P.  相似文献   

10.
塞舌尔微陆块及其北部区域的形成过程与冈瓦纳大陆解体和马达加斯加-塞舌尔-印度复杂的形成演化过程密切相关。通过对2016年中国-塞舌尔大陆边缘海洋地球科学联合调查航次所取得的高精度多波束数据和重力数据处理分析,首次得到了塞舌尔海台北部的高精度地形图和重力异常图。应用构造地貌学分析方法,结合该区域地形及地质、地球物理等资料,进一步探讨了该区域的构造演化过程。研究发现塞舌尔海台北部发育3条向海方向延伸的狭长条带状海脊和平坦的深海平原,与塞舌尔陆块被阿米兰特海沟所切割,是一独立的构造单元。岩石地球化学证据和构造演化历史表明,塞舌尔海台北部可能在印度洋早期扩张阶段形成,向海方向延伸的海脊是由岩浆沿转换断层薄弱带喷发形成的不连续海脊。  相似文献   

11.
12.

The structure of the South Powell Ridge (SPR), separating the Late Cenozoic ocean-floored Powell Basin and the Mesozoic Weddell Sea domain, is revealed by multichannel seismic data. The SPR appears as a basement high, bounded northward by transtensional faults and by normal and major reverse faults to the south. These margin features seem to be linked to the Powell Basin southern strike-slip margin and to the Jane Arc paleotrench, respectively. We suggest the ridge evolved from the Antarctic Peninsula passive margin to become the deformational front of the Scotia/Antarctica Plate boundary, later being welded to the Antarctic Plate.

  相似文献   

13.
Gorda Ridge is the southern segment of the Juan de Fuca Ridge complex, in the north-east Pacific. Along-strike spreading-rate variation on Gorda Ridge and deformation of Gorda Plate are evidence for compression between the Pacific and Gorda Plates. GLORIA sidescan sonographs allow the spreading fabric associated with Gorda Ridge to be mapped in detail. Between 5 and 2 Ma, a pair of propagating rifts re-orientated the northern segment of Gorda Ridge by about 10° clockwise, accommodating a clockwise shift in Pacific-Juan de Fuca plate motion that occurred around 5 Ma. Deformation of Gorda Plate, associated with southward decreasing spreading rates along southern Gorda Ridge, is accommodated by a combination of clockwise rotation of Gorda Plate crust, coupled with left-lateral motion on the original normal faults of the ocean crust. Segments of Gorda Plate which have rotated by different amounts are separated by narrow deformation zones across which sharp changes in ocean fabric trend are seen. Although minor lateral movement may occur on these NW to WNW structures, no major right-lateral movement, as predicted by previous models, is observed.  相似文献   

14.
The structure of the South Powell Ridge (SPR), separating the Late Cenozoic ocean-floored Powell Basin and the Mesozoic Weddell Sea domain, is revealed by multichannel seismic data. The SPR appears as a basement high, bounded northward by transtensional faults and by normal and major reverse faults to the south. These margin features seem to be linked to the Powell Basin southern strike-slip margin and to the Jane Arc paleotrench, respectively. We suggest the ridge evolved from the Antarctic Peninsula passive margin to become the deformational front of the Scotia/Antarctica Plate boundary, later being welded to the Antarctic Plate. Received: 18 August 1997 / Revision received: 4 May 1998  相似文献   

15.
Complementary to previous work mainly based on seismic interpretation, our compilation of geophysical data (multibeam bathymetry, gravity, magnetic and seismic) acquired within the framework of the ZoNéCo (ongoing since 1993) and FAUST (1998–2001) programs enables us to improve the knowledge of the New Caledonia Basin, Fairway Basin and Fairway Ridge, located within the Southwest Pacific region. The structural synthesis map obtained from geophysical data interpretation allows definition of the deep structure, nature and formation of the Fairway and New Caledonia Basins. Development of the Fairway Basin took place during the Late Cretaceous (95–65 Ma) by continental stretching. This perched basin forms the western margin of the New Caledonia Basin. A newly identified major SW–NE boundary fault zone separates northern NW–SE trending segments of the two basins from southern N–S trending segments. This crustal-scale fault lineament, that we interpret to be related to Cretaceous-early Cainozoic Tasman Sea spreading, separates the NW–SE thinned-continental and N–S oceanic segments of the New Caledonia Basin. We can thus propose the following pattern for the formation of the study area. The end of continental stretching within the Fairway and West Caledonia Basins ( 65–62 Ma) is interpreted as contemporaneous with the onset of emplacement of oceanic crust within the New Caledonia Basin’s central segment. Spreading occurred during the Paleocene (62–56 Ma), and isolated the Gondwanaland block to the west from the Norfolk block to the east. Finally, our geophysical synthesis enables us to extend the structural Fairway Basin down to the structural Taranaki Basin, with the structural New Caledonia Basin lying east of the Fairway Basin and ending further north than previously thought, within the Reinga Basin northwest of New Zealand.  相似文献   

16.
The continental margin of SW Africa is typical of a volcanic rifted margin associated with a hotspot trail characterized by a large volcanic ridge, the Walvis Ridge, defining the hotspot migration, and extensive extrusive volcanism that produced seaward-dipping reflectors (SDR). Previously unpublished seismic data show two significant anomalies of the SW African Margin when compared to other typical volcanic rifted margins: (1) Hyaloclastitic outer highs are rare, and (2) the SDR in the North dip towards the Walvis Ridge. We explain these anomalies by a major transform segment close to the centre of volcanism combined with pulsed volcanism. The Walvis Ridge represents an east-west striking extrusive centre which produced a SDR sequence. Following break-up the northern boundary of the Walvis Ridge became a left lateral transform fault. Our data support the idea that a transform fault system interacting with a ridge jump were responsible for the accretion of the São Paulo Plateau to the American plate.  相似文献   

17.
The northwestern continental margin of New Zealand offers one of the finest examples of a continent-backarc transform. This transform, part of the Vening Meinesz Fracture Zone (VMFZ), accommodated about 170 km of sea-floor spreading in the Norfolk backare basin together with eastward migration of a volcanic arc, the Three Kings Ridge, in the Mid- to Late Miocene. Before the onset of spreading, strain along the VMFZ may have been linked to a major Early Miocene obduction event — the emplacement of the Northland Allochthon. The transform is manifested by a belt up to 50 km wide of left-stepping, linear fault scarps up to 2000 m high within an approximately 100 km-wide deformed zone. A marginal ridge, the Reinga Ridge, which includes a faulted, folded and uplifted Miocene sedimentary basin, occurs within the high-standing continental side of the deformed zone, whereas a narrow strip of linear detached blocks occupies the deep backarc oceanic side. Prespreading uplift and erosion of crust in the proto-backarc region, are volcanism, and obduction of the allochthon, supplied clastic sediments to the basin on the continental side. This basin was complexly deformed as the transform evolved. The transform was initiated as a dextral strike-slip fault zone, which developed right-branching splays and left-steps along its length, uplifting and cutting the continental margin into left-hand, en echelon blocks and relays. Folds formed locally within relay blocks and at the distal ends of the splays. Only the high continental side of this zone (the Reinga Ridge) remains, the formerly adjacent crust (the Three Kings Ridge) having been displaced towards the southeast. As the Three Kings block moved and the Norfolk Basin opened, opposing rift margins of the backarc basin foundered to form terraces. The oceanic side of the transform also subsided to produce the belt of detached blocks (some laterally displaced by strike slip) and linear troughs along the main escarpment system.  相似文献   

18.
The area reviewed covers the Mid-Norway continental margin between latitudes 62°N and 68°N. Main structural elements, as defined at the base Cretaceous level, are the Tröndelag Platform, underlying the inner shelf, the Möre and Vöring Basins, located beneath the outer shelf and slope, and the Möre Platform and the Outer Vöring Plateau, forming a base of slope trend of highs. Sediments contained in the Mid-Norway Basin range in age from Late Palaeozoic to Cenozoic. The basement was consolidated during the Caledonian orogenic cycle. Devonian and Early Carboniferous wrench movements along the axis of the Arctic-North Atlantic Caledonides are thought to have preceded the Namurian onset of crustal extension. Rifting processes were intermittently active for some 270 My until crustal separation between Greenland and Fennoscandia was achieved during the Early Eocene. During the evolution of the Norwegian-Greenland Sea rift system a stepwise concentration of tectonic activities to its axial zone (the area of subsequent continental separation) is observed. During the Late Palaeozoic to Mid-Jurassic a broad zone was affected by tensional faulting. During the Late Jurassic and Cretaceous the Tröndelag Platform was little affected by faulting whilst major rift systems in the Möre and Vöring Basins subsided rapidly and their shoulders became concomitantly upwarped. During the latest Cretaceous and Early Palaeogene terminal rifting phase only the western Möre and Vöring Basins were affected by intrusive and extrusive igneous activity. Following the Early Eocene crustal separation and the onset of sea floor spreading in the Norwegian-Greenland Sea, the Vöring segment of the Mid-Norway marginal basin subsided less rapidly than the Möre segment. During the Early and Mid Tertiary, minor compressional deformations affected the Vöring Basin and to a lesser degree the Möre Basin. Tensional forces dominated the Late Palaeozoic to Early Cenozoic evolution of the Mid-Norway Basin and effected strain mainly in the area where the crust was weakened by the previous lateral displacements. The lithosphere thinned progressively and the effects of the passively upwelling hot asthenospheric material became more pronounced. Massive dyke invasion of the thinned crust preceded its rupture.  相似文献   

19.
The Manihiki Plateau is an elevated oceanic volcanic plateau that was formed mostly in Early Cretaceous time by hotspot activity. We analyze new seismic reflection data acquired on cruise KIWI 12 over the High Plateau region in the southeast of the plateau, to look for direct evidence of the location of the heat source and the timing of uplift, subsidence and faulting. These data are correlated with previous seismic reflection lines from cruise CATO 3, and with the results at DSDP Site 317 at the northern edge of the High Plateau. Seven key reflectors are identified from the seismic reflection profiles and the resulting isopach maps show local variations in thickness in the southeastern part of the High Plateau, suggesting a subsidence (cooling) event in this region during Late Cretaceous and up to Early Eocene time. We model this as a hotspot, active and centered on the High Plateau area during Early Cretaceous time in a near-ridge environment. The basement and Early Cretaceous volcaniclastic layers were formed by subaerial and shallow-water eruption due to the volcanic activity. After that, the plateau experienced erosion. The cessation of hotspot activity and subsequent heat loss by Late Cretaceous time caused the plateau to subside rapidly. The eastern and southern portions of the High Plateau were rifted away following the cessation of hot spot activity. As the southeastern portion of the High Plateau was originally higher and above the calcium carbonate compensation depth, it accumulated more sediments than the surrounding plateau regions. Apparently coeval with the rapid subsidence of the plateau are normal faults found at the SE edge of the plateau. Since Early Eocene time, the plateau subsided to its present depth without significant deformation.  相似文献   

20.
Original results of igneous rock studies are presented. The rocks were dredged during a marine expedition (cruise 37 of R/V Akademik M.A. Lavrent’ev in August–September, 2005) in the region of the submarine Vityaz Ridge and Kuril Arc outer slope. Several age complexes (Late Cretaceous, Eocene, Late Oligocene, Miocene, and Pliocene-Pleistocene) are recognizable on the Vityaz Ridge. These complexes are characterized by a number of common geochemical features since all of them represent the formations of island arc calc-alkali series. At the same time, they also have individual features reflecting different geodynamic settings. The outer slope of the Kuril Arc demonstrates submarine volcanism. The Pliocene-Pleistocene volcanic rocks dredged here are similar to the volcanites of the Kuril-Kamchatka Arc frontal zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号