首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plinian eruptions of 1912 at Novarupta,Katmai National Park,Alaska   总被引:1,自引:0,他引:1  
The three-day eruption at Novarupta in 1912 consisted of three discrete episodes. Episode I began with plinian dispersal of rhyolitic fallout (Layer A) and contemporaneous emplacement of rhyolitic ignimbrites and associated proximal veneers. The plinian column was sustained throughout most of the interval of ash flow generation, in spite of progressive increases in the proportions of dacitic and andesitic ejecta at the expense of rhyolite. Accordingly, plinian Layer B, which fell in unbroken continuity with purely rhyolitic Layer A, is zoned from >99% to 15% rhyolite and accumulated synchronously with emplacement of the correspondingly zoned ash flow sequence in Mageik Creek and the Valley of Ten Thousand Smokes (VTTS). Only the andesiterichest flow units that cap the flow sequence lack a widespread fallout equivalent, indicating that ignimbrite emplacement barely outlasted the plinian phase. On near-vent ridges, the passing ash flows left proximal ignimbrite veneers that share the compositional zonation of their valley-filling equivalents but exhibit evidence for turbulent deposition and recurrent scour. Episode II began after a break of a few hours and was dominated by plinian dispersal of dacitic Layers C and D, punctuated by minor proximal intraplinian flows and surges. After another break, dacitic Layers F and G resulted from a third plinian episode (III); intercalated with these proximally are thin intraplinian ignimbrites and several andesite-rich fall/flow layers. Both CD and FG were ejected from an inner vent <400 m wide (nested within that of Episode I), into which the rhyolitic lava dome (Novarupta) was still later extruded. Two finer-grained ash layers settled from composite regional dust clouds: Layer E, which accumulated during the D-F hiatus, includes a contribution from small contemporaneous ash flows; and Layer H settled after the main eruption was over. Both are distinct layers in and near the VTTS, but distally they merge with CD and FG, respectively; they are largely dacitic but include rhyolitic shards that erupted during Episode I and were kept aloft by atmospheric turbulence. Published models yield column heights of 23–26 km for A, 22–25 km for CD, and 17–23 km for FG; and peak mass eruption rates of 0.7–1x108, 0.6–2x108, and 0.2–0.4x108 kg s-1, respectively. Fallout volumes, adjusted to reflect calculated redistribution of rhyolitic glass shards, are 8.8 km3, 4.8 km3, and 3.4 km3 for Episodes I, II, and III. Microprobe analyses of glass show that as much as 0.4 km3 of rhyolitic glass shards from eruptive Episode I fell with CDE and 1.1 km3 with FGH. Most of the rhyolitic ash in the dacitic fallout layers fell far downwind (SE of the vent); near the rhyolite-dominated ignimbrite, however, nearly all of Layers E and H are dacitic, showing that the downwind rhyolitic ash is of co-plinian rather than co-ignimbrite origin.  相似文献   

2.
Proximal (<3 km) deposits from episodes II and III of the 60-h-long Novarupta 1912 eruption exhibit a very complex stratigraphy, the result of at least four transport regimes and diverse depositional mechanisms. They contrast with the relatively simple stratigraphy (and inferred emplacement mechanisms) for the previously documented, better known, medial–distal fall deposits and the Valley of Ten Thousand Smokes ignimbrite. The proximal products include alternations and mixtures of both locally and regionally dispersed fall ejecta, and numerous thin complex deposits of pyroclastic density currents (PDCs) with no regional analogs. The locally dispersed component of the fall deposits forms sector-confined wedges of material whose thicknesses halve radially from and concentrically about the vent over distances of 100–300 m (cf. several kilometers for the medial–distal fall deposits). This locally dispersed fall material (and many of the associated PDC deposits) is rich in andesitic and banded pumices and richer in shallow-derived wall-rock lithics in comparison with the coeval medial fall units of almost entirely dacitic composition. There are no marked contrasts in grain size in the near-vent deposits, however, between locally and widely dispersed beds, and all samples of the proximal fall deposits plot as a simple continuation of grain size trends for medial–distal samples. Associated PDC deposits form a spectrum of facies from fines-poor, avalanched beds through thin-bedded, landscape-mantling beds to channelized lobes of pumice-block-rich ignimbrite. The origins of the Novarupta near-vent deposits are considered within a spectrum of four transport regimes: (1) sustained buoyant plume, (2) fountaining with co-current flow, (3) fountaining with counter-current flow, and (4) direct lateral ejection. The Novarupta deposits suggest a model where buoyant, stable, regime-1 plumes characterized most of episodes II and III, but were accompanied by transient and variable partitioning of clasts into the other three regimes. Only one short period of vent blockage and cessation of the Plinian plume occurred, separating episodes II and III, which was followed by a single PDC interpreted as an overpressured "blast" involving direct lateral ejection. In contrast, regimes 2 and 3 were reflected by spasmodic sedimentation from the margins of the jet and perhaps lower plume, which were being strongly affected by short-lived instabilities. These instabilities in turn are inferred to be associated with heterogeneities in the mixture of gas and pyroclasts emerging from the vent. Of the parameters that control explosive eruptive behavior, only such sudden and asymmetrical changes in the particle concentration could operate on time scales sufficiently short to explain the rapid changes in the proximal 1912 products.Editorial responsibility: R. Cioni  相似文献   

3.
New data extend our understanding of the 1912 eruption, its backfilled vent complex at Novarupta, and magma-storage systems beneath adjacent stratovolcanoes. Initial Plinian rhyolite fallout is confined to a narrow downwind sector, and its maximum thickness may occur as far as 13 km from source. In contrast, the partly contemporaneous rhyolite-rich ash flows underwent relatively low-energy emplacement, their generation evidently being decoupled from the high column. Flow veneers 1–13 m thick on near-vent ridge crests exhibit a general rhyolite-to-andesite sequence like that of the much thicker valley-confined ignimbrite into which they merge downslope. Lithics in both the initial Plinian and the ignimbrite are predominantly fragments of the Jurassic Naknek Formation, which extends from the surface to a depth of ca. 1500 m. Absence of lithics from the underlying sedimentary section limits to < 1.5 km the fragmentation level and the structural depth of the vent, which is thought to be funnel-shaped, flaring shallowly to a surface diameter of 2 km. Overlying the ignimbrite are layers of Plinian dacite fallout, > 100 m thick near source and 10 m thick 3 km away, which dip back into an inner vent <0.5 km wide, nested inside the earlier vent funnel of the ignimbrite. The dacite fallout is poor in Naknek lithics but contains abundant fragments of vitrophyre, most of which was vent-filling, densely welded tuff reejected during later phases of the 3-day eruption. Adjacent to the inner vent, a 225-m-high asymmetrical accumulation of coarse near-vent ejecta is stratigraphically continuous with the regional dacite fallout. Distensional faulting of its crest may reflect spreading related to compaction and welding. Nearby andesite-dacite stratovolcanoes, i.e., Martin, Mageik, Trident, and Katmai, display at least 12 vents that define a linear volcanic front trending N65°E. The 1912 vent and adjacent dacite domes are disposed parallel to the front and ca. 4 km behind it. Mount Griggs, 10 km behind the front, is more potassic than other centers, taps isotopically more depleted source materials, and reflects a wholly independent magmatic plumbing system. Geochemical differences among the stratovolcanoes, characteristically small eruptive volumes ( < 0.1 to 0.4 km3), and the dominance of andesite and low-SiO2 dacite suggest complex crustal reservoirs, not large integrated magma chambers. Linear fractures just outside the 1912 vent strike nearly normal to the volcanic front and may reflect dike transport of magma previously stored beneath Trident 3–5 km away. Caldera collapse at Mount Katmai may have taken place in response to hydraulic transfer of Katmai magma toward Novarupta via reservoir components beneath Trident. The voluminous 1912 eruption (12–15 km3 DRE) was also unusual in producing high-silica rhyolite (6–9 km3 DRE), a composition rare in this arc and on volcanic fronts in general. Isotopic data indicate that rhyolite genesis involved little assimilation of sedimentary rocks, pre-Tertiary plutonic rocks, or hydrothermally altered rocks of any age. Trace-element data suggest nonetheless that the rhyolite contains a nontrivial crustal contribution, most likely partial melts of Late Cenozoic arc-intrusive rocks. Because the three compositions (77%, 66–64.5%, and 61.5–58.5% SiO2) that intermingled in 1912 vented both concurrently and repeatedly (after eruptive pauses hours in duration), the compositional gaps between them must have been intrinsic to the reservoir, not merely effects of withdrawal dynamics.  相似文献   

4.
The submarine counterparts of late Quaternary subaerial pyroclastic flow deposits off the western flanks of Dominica, Lesser Antilles, have been investigated by 3.5 kHz seismic profiling and dredging (cruise EN20 of R/V “Endeavor”). Block-and-ash flow deposits formed by dome collapse and a welded ignimbrite from a prominent fan at Grande Savanne, Dominica. This fan can be traced underwater as a major constructional ridge (2–4 km wide and 200–400 m thick) to over 13 km offshore at a water depth of 1800 m. The submarine ridge has a volume of 14 km3 and has the characteristic morphology of a debris flow apron composed of several individual units. The evidence suggests that pyroclastic flows can move underwater without losing their essential character.  相似文献   

5.
The largest Plinian eruption of our era and the latest caldera-forming eruption in the Kuril-Kamchatka region occurred about cal. A.D. 240 from the Ksudach volcano. This catastrophic explosive eruption was similar in type and characteristics to the 1883 Krakatau event. The volume of material ejected was 18–19 km3 (8 km3 DRE), including 15 km3 of tephra fall and 3–4 km3 of pyroclastic flows. The estimated height of eruptive column is 22–30 km. A collapse caldera resulting from this eruption was 4 × 6.5 km in size with a cavity volume of 6.5–7 km3. Tephra fall was deposited to the north of the volcano and reached more than 1000 km. Pyroclastic flows accompanied by ash-cloud pyroclastic surges extended out to 20 km. The eruption was initially phreatomagmatic and then became rhythmic, with each pulse evolving from pumice falls to pyroclastic flows. Erupted products were dominantly rhyodacite throughout the eruption. During the post-caldera stage, when the Shtyubel cone started to form within the caldera, basaltic-andesite and andesite magma began to effuse. The trigger for the eruption may have been an intrusion of mafic magma into the rhyodacite reservoir. The eruption had substantial environmental impact and may have produced a large acidity peak in the Greenland ice sheet.  相似文献   

6.
A refraction study was made in the Valley of Ten Thousand Smokes, Katmai, Alaska to determine the thickness and structure of the 1912 ash flow. The tuff, in general, is composed of a thin surficial layer approximately one half meter thick and a main body that varies from 20 to over 70 meters in the areas surveyed. In most sections, two to three layers were discerned in the main body of the tuff, suggesting that the cruption may have occurred in more than one phase. The greatest thickness of the deposit is in the vicinity of Novarupta. This observation suggests that Novarupta was a major source of the tuff. The estimated volume of the tuff is approximately 3.8 km2 based on an average thickness of 30 m and an area of 127 km2.  相似文献   

7.
The 26.5 ka Oruanui eruption, from Taupo volcano in the central North Island of New Zealand, is the largest known ‘wet’ eruption, generating 430 km3 of fall deposits, 320 km3 of pyroclastic density–current (PDC) deposits (mostly ignimbrite) and 420 km3 of primary intracaldera material, equivalent to 530 km3 of magma. Erupted magma is >99% rhyolite and <1% relatively mafic compositions (52.3–63.3% SiO2). The latter vary in abundance at different stratigraphic levels from 0.1 to 4 wt%, defining three ‘spikes’ that are used to correlate fall and coeval PDC activity. The eruption is divided into 10 phases on the basis of nine mappable fall units and a tenth, poorly preserved but volumetrically dominant fall unit. Fall units 1–9 individually range from 0.8 to 85 km3 and unit 10, by subtraction, is 265 km3; all fall deposits are of wide (plinian) to extremely wide dispersal. Fall deposits show a wide range of depositional states, from dry to water saturated, reflecting varied pyroclast:water ratios. Multiple bedding and normal grading in the fall deposits show the first third of the eruption was very spasmodic; short-lived but intense bursts of activity were separated by time breaks from zero up to several weeks to months. PDC activity occurred throughout the eruption. Both dilute and concentrated currents are inferred to have been present from deposit characteristics, with the latter being volumetrically dominant (>90%). PDC deposits range from mm- to cm-thick ultra-thin veneers enclosed within fall material to >200 m-thick ignimbrite in proximal areas. The farthest travelled (90 km), most energetic PDCs (velocities >100 m s−1) occurred during phase 8, but the most voluminous PDC deposits were emplaced during phase 10. Grain size variations in the PDC deposits are complex, with changes seen vertically in thick, proximal accumulations being greater than those seen laterally from near-source to most-distal deposits. Modern Lake Taupo partly infills the caldera generated during this eruption; a 140 km2 structural collapse area is concealed beneath the lake, while the lake outline reflects coeval peripheral and volcano–tectonic collapse. Early eruption phases saw shifting vent positions; development of the caldera to its maximum extent (indicated by lithic lag breccias) occurred during phase 10. The Oruanui eruption shows many unusual features; its episodic nature, wide range of depositional conditions in fall deposits of very wide dispersal, and complex interplay of fall and PDC activity.  相似文献   

8.
The Pucón eruption was the largest Holocene explosive outburst of Volcán Villarrica, Chile. It discharged >1.0 km3 of basaltic-andesite magma and >0.8 km3 of pre-existing rock, forming a thin scoria-fall deposit overlain by voluminous ignimbrite intercalated with pyroclastic surge beds. The deposits are up to 70 m thick and are preserved up to 21 km from the present-day summit, post-eruptive lahar deposits extending farther. Two ignimbrite units are distinguished: a lower one (P1) in which all accidental lithic clasts are of volcanic origin and an upper unit (P2) in which basement granitoids also occur, both as free clasts and as xenoliths in scoria. P2 accounts for ∼80% of the erupted products. Following the initial scoria fallout phase, P1 pyroclastic flows swept down the northern and western flanks of the volcano, magma fragmentation during this phase being confined to within the volcanic edifice. Following a pause of at least a couple of days sufficient for wood devolatilization, eruption recommenced, the fragmentation level dropped to within the granitoid basement, and the pyroclastic flows of P2 were erupted. The first P2 flow had a highly turbulent front, laid down ignimbrite with large-scale cross-stratification and regressive bedforms, and sheared the ground; flow then waned and became confined to the southeastern flank. Following emplacement of pyroclastic surge deposits all across the volcano, the eruption terminated with pyroclastic flows down the northern flank. Multiple lahars were generated prior to the onset of a new eruptive cycle. Charcoal samples yield a probable eruption age of 3,510 ± 60 14C years BP.  相似文献   

9.
In southern British Columbia the terrestrial heat flow is low (44 mW m–2) to the west of the Coast Plutonic Complex (CPC), average in CPC (50–60 mW m–2),and high to the east(80–90 mW m–2). The average heat flow in CPC and the low heat generation (less than 1 W m–3) indicate that a relatively large amount of heat flows upwards into the crust which is generally quite cool. Until two million years ago the Explorer plate underthrust this part of the American plate, carrying crustal material into the mantle. Melted crustal rocks have produced the inland Pemberton and Garibaldi volcanic belts in the CPC.Meager Mountain, a volcanic complex in the CPC 150 km north of Vancouver, is a possible geothermal energy resource. It is the product of intermittent activity over a period of 4 My, the most recent eruption being the Bridge River Ash 2440 y B.P. The original explosive eruption produced extensive fracturing in the granitic basement, and a basal explosion breccia from the surface of a cold brittle crust. This breccia may be a geothermal reservoir. Other volcanic complexes in the CPC have a similar potential for geothermal energy.Earth Physics Contribution No. 704.  相似文献   

10.
The Tosu pyroclastic flow deposit, a low-aspect-ratio ignimbrite (LARI), has widely distributed breccia facies around Aso caldera, Japan. The proximal facies, 9–34 km away from the source, consists of 3 different lithofacies, from bottom to top: a lithic-enriched and fines-depleted (FD) facies, a lithic-enriched (LI) facies with an ash matrix, and a fines- and pumice-enriched (NI) facies. Modes of emplacement of FD, LI, and NI are interpreted as ground layer, 2b-lithic-concentration zone, and normal ignimbrite, respectively. These stratigraphic components in the Tosu originated from the flow head (FD) and the flow body (LI and NI), and were generated by a single column collapse event. Remarkably thick FD and LI, in contrast to thin NI, suggest that due to high mobility most ash and punice fragments in the Tosu were carried and deposited as NI in the distal area. Heavier components were selectively deposited as FD and LI in the proximal area. The rate of falloff of lithic-clast size in the Tosu shows an inflection at 20 km from the source. In a survey of well-documented pyroclastic flows, the inflection distance of a LARI is generally greater than that of a high-aspect-ratio ignimbrite, so that the eruption of the former is probably more intense than the latter.  相似文献   

11.
The 14.1 Ma old composite ignimbrite cooling unit P1 (45 km3) on Gran Canaria comprises a lower mixed rhyolite-trachyte tuff, a central rhyolite-basalt mixed tuff, and a slightly rhyolite-contaminated basaltic tuff at the top. The basaltic tuff is compositionally zoned with (a) an upward change in basalt composition to higher MgO content (4.3–5.2 wt.%), (b) variably admixed rhyolite or trachyte (commonly <5 wt.%), and (c) an upward increasing abundance of basaltic and plutonic lithic fragments and cognate cumulate fragments. The basaltic tuff is divided into three structural units: (I) the welded basaltic ignimbrite, which forms the thickest part (c. 95 vol.%) and is the main subject of the present paper; (II) poorly consolidated massive, bomb- and block-rich beds interpreted as phreatomagmatic pyroclastic flow deposits; and (III) various facies of reworked basaltic tuff. Tuff unit I is a basaltic ignimbrite rather than a lava flow because of the absence of top and bottom breccias, radial sheet-like distribution around the central Tejeda caldera, thickening in valleys but also covering higher ground, and local erosion of the underlying P1 ash. A gradual transition from dense rock in the interior to ash at the top of the basaltic ignimbrite reflects a decrease in welding; the shape of the welding profile is typical for emplacement temperatures well above the minimum welding temperature. A similar transition occurs at the base where the ignimbrite was emplaced on cold ground in distal sections. In proximal sections the base is dense where it was emplaced on hot felsic P1 tuff. The intensity of welding, especially at the base, and the presence of spherical particles and of mantled and composite particles formed by accretion and coalescence in a viscous state imply that the flow was a suspension of hot magma droplets. The flow most likely had to be density stratified and highly turbulent to prevent massive coalescence and collapse. Model calculations suggest eruption through low pyroclastic fountains (<1000 m high) with limited cooling during eruption and turbulent flow from an initial temperature of 1160°C. The large volume of 26 km3 of erupted basalt compared with only 16 km3 of the evolved P1 magmas, and the extremely high discharge rates inferred from model calculations are unusual for a basaltic eruption. It is suggested that the basaltic magma was erupted and emplaced in a fashion commonly only attributed to felsic magmas because it utilized the felsic P1 magma chamber and its ring-fissure conduits. Evolution of the entire P1 eruption was controlled by withdrawal dynamics involving magmas differing in viscosity by more than four orders of magnitude. The basaltic eruption phase was initially driven by buoyancy of the basaltic magma at chamber depth and continued degassing of felsic magma, but most of the large volume of basalt magma was driven out of the reservoir by subsidence of a c. 10 km diameter roof block, which followed a decrease in magma chamber pressure during low viscosity basaltic outflow.  相似文献   

12.
Augustine, an island volcano in Lower Cook Inlet, southern Alaska, erupted in January, 1976, after 12 years of dormancy. By April, when the eruptions ended, a new lava dome had been extruded into the summit crater and about 0.1 km3 of pyroclastics had been deposited on the island, mainly as pyroclastic debris avalanches and pumice flows. The ventclearing phase in January was highly explosive and we have been able to document 13 major vulcanian eruptions.The timing, thermal energy, mass loading of fine particles and the horizontal dispersion of these eruption clouds were determined from radar measurements of cloud height, reports of pilots flying in plumes, satellite photography, seismic records and infrasonic detection of air waves. A lower estimate of the mass of fine (r < 68 μm) particles injected into the troposphere from the 13 main eruptions in January is 5.5–18 × 1012 g. The corresponding mass loading of fine particles within individual eruption clouds is 0.3–1 g m−3. We calculated thermal energies of 4 × 1014 to 35 × 1014 J for individual eruptions by applying convective plume rise theory to observed cloud heights and seismically determined eruption durations. This energy range compares favorably with the 4–16 × 1014 J of thermal energy, calculated from the cooling of juvenile material contained in a typical eruption cloud.The vulcanian eruption clouds stayed intact for at least 700 km downwind. Satellite images in both visible and infrared wavebands, showing the Gulf of Alaska just after sunrise on January 23, reveal a series of puffs strung out downwind from the volcano, 20–30 km in diameter and with their tops at altitudes of about 8 km, overlying a continuous plume at altitude 4 km. Each puff corresponded to a seismically and infrasonically timed eruption. A substantial portion of the material injected into the atmosphere between January 22 and 25 was rapidly transported by the subpolar jet stream through southwestern Canada and the western United States, then northeast across the States into the Atlantic. The clouds were observed passing over Tucson, Arizona, on January 25 at an elevation of 7 km.Several of the eruptions penetrated into the stratosphere. Sun photometer measurements, taken at Mauna Loa, Hawaii, six weeks after the eruption, showed an increased stratospheric optical thickness of 0.01 (wavelength 0.5 μm), which decayed in about 5 months. The maximum column mass loading of the veil was 4–10 × 10−7 g cm−2. The mass of the veil, spread-ever a fourth of the earth's surface, is 10 to 100 times larger than can be accounted for by assuming that injected ash and converted sulfate particles from the 13 main Augustine eruptions are the only components contributing to the stratospheric turbidity observed at Mauna Loa.  相似文献   

13.
Proximal deposits of the 3.3 Ma Grants Ridge Tuff, part of a 5-km3 topaz rhyolite sequence, are composed of basal pyroclastic flow, surge, and fallout deposits, a thick central ignimbrite, and upper surge and fallout deposits. Large lithic blocks (≤2 m) of underlying sedimentary and granitic bedrock that are present in lower pyroclastic flow and fallout deposits indicate that the eruptive sequence began with explosive, conduit-excavating eruptions. The massive, nonwelded central ignimbrite displays evidence for postemplacement deformation. The upper pyroclastic surge deposits are dominated by fine ash, some beds containing accretionary lapilli, soft-sediment deformation features, and mud-coated lithic lapilli, indicating an explosive, hydromagmatic component to these later eruptions. The upper fall and surge deposits are overlain by fluvially reworked volcaniclastic deposits that truncate the primary section with a relatively planar surface. The proximal, upper pyroclastic surge and Plinian fall deposits are preserved only in small grabens (5–8 m deep and wide), where they subsided into the ignimbrite and were protected from reworking. The pyroclastic surge and fall deposits within the grabens are offset by numerous small normal faults. The offset on some faults decreases upward through the section, indicating that the faulting process may have been syn-eruptive. Several graben-bounding faults extend downward into the ignimbrite, but the uppermost, fluvially reworked tephra layers are not cut by these faults. The faulting mechanism may have been related to settling and compaction of the 60 m thick, valley-filling ignimbrite along the axis of the paleovalley. Draping surge contacts against the graben faults and brittle and soft-style disruption of the upper pyroclastic surge beds indicate that subsidence was ongoing during the emplacement of the upper eruptive sequence. Seismicity accompanying the late-stage hydromagmatic explosions may have contributed to the abrupt settling and compaction of the ignimbrite.  相似文献   

14.
The Scafell caldera-lake volcaniclastic succession is exceptionally well exposed. At the eastern margin of the caldera, a large andesitic explosive eruption (>5 km3) generated a high-mass-flux pyroclastic density current that flowed into the caldera lake for several hours and deposited the extensive Pavey Ark ignimbrite. The ignimbrite comprises a thick (≤125 m), proximal, spatter- and scoria-rich breccia that grades laterally and upwards into massive lapilli-tuff, which, in turn, is gradationally overlain by massive and normal-graded tuff showing evidence of soft-state disruption. The subaqueous pyroclastic current carried juvenile clasts ranging from fine ash to metre-scale blocks and from dense andesite through variably vesicular scoria to pumice (<103 kg m−3). Extreme ignimbrite lithofacies diversity resulted via particle segregation and selective deposition from the current. The lacustrine proximal ignimbrite breccia mainly comprises clast- to matrix-supported blocks and lapilli of vesicular andesite, but includes several layers rich in spatter (≤1.7 m diameter) that was emplaced in a ductile, hot state. In proximal locations, rapid deposition of the large and dense clasts caused displacement of interstitial fluid with elutriation of low-density lapilli and ash upwards, so that these particles were retained in the current and thus overpassed to medial and distal reaches. Medially, the lithofacies architecture records partial blocking, channelling and reflection of the depletive current by substantial basin-floor topography that included a lava dome and developing fault scarps. Diffuse layers reflect surging of the sustained current, and the overall normal grading reflects gradually waning flow with, finally, a transition to suspension sedimentation from an ash-choked water column. Fine to extremely fine tuff overlying the ignimbrite forms ∼25% of the whole and is the water-settled equivalent of co-ignimbrite ash; its great thickness (≤55 m) formed because the suspended ash was trapped within an enclosed basin and could not drift away. The ignimbrite architecture records widespread caldera subsidence during the eruption, involving volcanotectonic faulting of the lake floor. The eruption was partly driven by explosive disruption of a groundwater-hydrothermal system adjacent to the magma reservoir.  相似文献   

15.
Eighteen digital AVHRR (advanced very high resolution radiometer) data sets from NOAA-6 and NOAA-9 polar-orbiting satellites recorded between 27 March and 7 April 1986 depict the eruptive activity of Augustine volcano, located 280 km SW of Anchorage, Alaska. The synoptic view (resolution of either 1.1 or 4.4 km), frequent coverage (often twice a day), and multispectral coverage (five bands: 0.58–0.68; 0.72–1.1; 3.55–3.93; 10.5–11.3; and 11.5–12.5 m) makes the AVHRR broadly applicable to analyzing explosive eruption clouds. The small scale of the Augustine activity (column heights of 2–13 km and eruption rates of 2x106–8x107 metric tonnes/day) facilitated intensive multispectral study because the plumes generally covered areas within the 550x550 km area of one easily manipulated image field. Hourly ground weather data and twice-daily radiosonde measurements from stations surrounding the volcano plus numerous volcanological observations were made throughout the eruption, providing important ground truth with which to calibrate the satellite data. The total erupted volume is estimated to be at least 0.102 km3. The pattern of changing eruption rates determined by satellite observations generally correlate with more detailed estimates of explosion magnitudes. Multispectral processing techniques were used to distinguish eruption clouds from meteorological clouds. Variable weather during the Augustine eruption offered an opportunity to test various trial algorithms. A ratio between thermal IR channels four and five, served to delineate the ashbearing eruption plumes from ordinary clouds. Future work is needed to determine whether the successful multispectral discrimination is caused by wavelength-dependent variable emission of silicate ash or reflects a spectral role of sulfuric acid aerosol in the plume.  相似文献   

16.
In the subglacial eruption at Gjálp in October 1996 a 6 km long and 500 m high subglacial hyaloclastite ridge was formed while large volumes of ice were melted by extremely fast heat transfer from magma to ice. Repeated surveying of ice surface geometry, measurement of inflow of ice, and a full Stokes 2-D ice flow model have been combined to estimate the heat output from Gjálp for the period 1996–2005. The very high heat output of order 106 MW during the eruption was followed by rapid decline, dropping to  2500 MW by mid 1997. It remained similar until mid 1999 but declined to 700 MW in 1999–2001. Since 2001 heat output has been insignificant, probably of order 10 MW. The total heat carried with the 1.2 × 1012 kg of basaltic andesite erupted (0.45 km3 DRE) is estimated to have been 1.5 × 1018 J. About two thirds of the thermal energy released from the 0.7 km3 edifice in Gjálp occurred during the 13-day long eruption, 20% was released from end of eruption until mid 1997, a further 10% in 1997–2001, and from mid 2001 to present, only a small fraction remained. The post-eruption heat output history can be reconciled with the gradual release of 5 × 1017 J thermal energy remaining in the Gjálp ridge after the eruption, assuming single phase liquid convection in the cooling edifice. The average temperature of the edifice is found to have been approximately 240 °C at the end of the eruption, dropping to  110 °C after 9 months and reaching  40 °C in 2001. Although an initial period of several months of very high permeability is possible, the most probable value of the permeability from 1997 onwards is of order 10− 12 m2. This is consistent with consolidated/palagonitized hyaloclastite but incompatible with unconsolidated tephra. This may indicate that palagonitization had advanced sufficiently in the first 1–2 years to form a consolidated hyaloclastite ridge, resistant to erosion. No ice flow traversing the Gjálp ridge has been observed, suggesting that it has effectively been shielded from glacial erosion in its first 10 years of existence.  相似文献   

17.
The 35 × 20 km Cerro Galán resurgent caldera is the largest post-Miocene caldera so far identified in the Andes. The Cerro Galán complex developed on a late pre-Cambrian to late Palaeozoic basement of gneisses, amphibolites, mica schists and deformed phyllites and quartzites. The basement was uplifted in the early Miocene along large north-south reverse faults, producing a horst-and-graben topography. Volcanism began in the area prior to 15 Ma with the formation of several andesite to dacite composite volcanoes. The Cerro Galán complex developed along two prominent north-south regional faults about 20 km apart. Dacitic to rhyodacitic magma ascended along these faults and caused at least nine ignimbrite eruptions in the period 7-4 Ma (K-Ar determinations). These ignimbrites are named the Toconquis Ignimbrite Formation. They are characterised by the presence of basal plinian deposits, many individual flow units and proximal co-ignimbrite lag breccias. The ignimbrites also have moderate to high macroscopic pumice and lithic contents and moderate to low crystal contents. Compositionally banded pumice occurs near the top of some units. Many of the Toconquis eruptions occurred from vents along a north-south line on the western rim of the young caldera. However, two of the ignimbrites erupted from vents on the eastern margin. Lava extrusions occurred contemporaneously along these north-south lines. The total D.R.E. volume of Toconquis ignimbrite exceeds 500 km3.Following a 2-Ma dormant period a single major eruption of rhyodacitic magma formed the 1000-km3 Cerro Galán ignimbrite and the caldera. The ignimbrite (age 2.1 Ma on Rb-Sr determination) forms a 30–200-m-thick outflow sheet extending up to 100 km in all directions from the caldera rim. At least 1.4 km of welded intracaldera ignimbrite also accumulated. The ignimbrite is a pumice-poor, crystal-rich deposit which contains few lithic clasts. No basal plinian deposit has been identified and proximal lag breccias are absent. The composition of pumice clasts is a very uniform rhyodacite which has a higher SiO2 content but a lower K2O content than the Toconquis ignimbrites. Preliminary data indicate no evidence for compositional zonation in the magma chamber. The eruption is considered to have been caused by the catastrophic foundering of a cauldron block into the magma chamber.Post-caldera extrusions occurred shortly after eruption along both the northern extension of the eastern boundary fault and the western caldera margin. Resurgence also occurred, doming up the intracaldera ignimbrite and sedimentary fill to form the central mountain range. Resurgent doming was centred along the eastern fault and resulted in radial tilting of the ignimbrite and overlying lake sediments.  相似文献   

18.
The 2-D crustal velocity model along the Hirapur-Mandla DSS profile across the Narmada-Son lineament in central India (Murty et al., 1998) has been updated based on the analysis of some short and discontinuous seismic wide-angle reflection phases. Three layers, with seismic velocities of 6.5–6.7, 6.35–6.40 and 6.8 km s–1, and upper boundaries located approximately at 8, 17 and 22 km depth respectively, have been identified between the basement (velocity 5.9 km s–1) and the uppermost mantle (velocity 7.8 km s–1). The layer with 6.5–6.7 km s–1 velocity is thin and is less than 2-km deep between the Narmada north (at Katangi) and south (at Jabalpur) faults. The upper crust shows a horst feature between these faults, which indicates that the Narmada zone acts as a ridge between two pockets of mafic intrusion in the upper crust. The Moho boundary, at 40–44 km depth and the intra-crustal layers exhibit an upwarp suggesting that the Narmada faults have deep origins, involving deep-seated tectonics. A smaller intrusive thickness between the Narmada faults, as compared to those beyond these faults, suggests that the intrusive activities on the two sides are independent. This further suggests that the two Narmada faults may have been active at different geological times. The seismic model is constrained by 2-D gravity modeling. The gravity highs on either side of the Narmada zone are due to the effect of the high velocity/high density mafic intrusion at upper crustal level.  相似文献   

19.
The landslide and cataclysmic eruption of Mount St. Helens on May 18, 1980 triggered a sequence of explosive eruptions over the following five months. The volume of explosive products from each of these eruptions decreased uniformly over this period, and the character for each eruption progressed from a fairly continuous eruption lasting more than eight hours on May 18 to a series of short bursts, some of which were spaced 12 hours apart, on October 16–18. The transition in the character of these eruption sequences can be explained by a difference between the magma supply rate and the magma discharge rate from a shallow reservoir.The magma supply rate (MSR) is the rate with which magma is supplied to the level where disruption due to vesiculation occurs. It is determined by dividing the dense-rock-equivalent volume of eruptive products by the total duration of each eruption sequence. The magma discharge rate (MDR) is the rate with which the disrupted magma is discharged through the vent. It is determined by dividing the volume of erupted products by the duration of each explosive burst. The relative magnitude of these two quantities controls the temporal evolution of an explosive event. When MDRMSR the explosive phase of the eruption lasts for several hours as a single continuous event. When MDR>MSR, an eruption is characterized by a series of short explosive bursts at intervals of several minutes to several days. The MSR of the eruptions of 1980 decreased with time from 5500 m' s−1 on May 18 to 7 m3 s−2 on October 16–18 and approximately fits an exponential decay. The MDR for the same events remained approximately constant at 2000 m3 s−1. Each explosive event has been followed by an aftershock-like series of earthquakes located beneath the volcano at depth mostly between 7 and 14 km. The seismic energy released during each of these series is proportional to the corresponding volume of erupted magma. Deformation data between June and November, 1980 indicate a subsidence of the volcanic structure which can be modeled by a volume collapse of 0.25 km3 located at 9 km depth.We propose a model in which magma is supplied from depths of 7–14 km through a narrow conduit during each eruption. It erupts to the surface at a uniform rate during each eruption. The deep seismic activity following each eruption is related to a readjustment and volume decrease in the deep feeding system. The decrease of the MSR over time is explained by an increase in the viscosity of a progressively water-depleted magma. The amount of water necessary to explain the observed decrease of the MSR is of the order of 4.6%.  相似文献   

20.
The Rio Caliente ignimbrite is a multi-flow unit orcompound ignimbrite formed during a major late Quaternary explosive rhyolitic eruption of La Primavera volcano, Mexico. The eruption sequence of the ignimbrite is complex and it occurs between lower and upper plinian air-fall deposits. It is, therefore, anintraplinian ignimbrite. Air-fall layers, pyroclastic surge, mudflow and fluviatile reworked pumice deposits also occur interbedded between ignimbrite flow units. A chaotic near-vent facies of the ignimbrite includes co-ignimbrite lag breccias segregated from proximal pumice flows. The facies locates a central vent but one which could not have been associated with a well defined edifice. Many of the lithics in the exposed lag breccias and near-vent facies of the ignimbrite appear to be fragments of welded Rio Caliente ignimbrite, and indicate considerable vent widening, or migration, during the eruption. Nearer vent the ignimbrite is thickest and composed of the largest number of flow units. Here it is welded and is a simple cooling unit. Evidence suggests that it was only the larger thicker pumice flows that escaped to the outer parts of the sheet. Detailed analysis of four flow units indicates that the pumice flows were generally poorly expanded, less mobile flows which would be produced by collapse of low eruption columns. The analogy of a compound ignimbrite with a compound lava flow is, therefore, good — a compound lava flow forms instead of a simple one when the volumetric discharge rate (or intensity) is low, and in explosive eruptions this predicts lower eruption column heights. A corollary is that the ignimbrite has a high aspect ratio. The complex eruption sequence shows the reinstatement of plinian activity several times during the eruption after column collapse occurred. This, together with erosional breaks and evidence that solidified fragments of already welded ignimbrite were re-ejected, all suggest the eruption lasted a relatively significant time period. Nearly 90 km3 of tephra were erupted. The associated plinian pumice fall is one of the largest known having a volume of 50 km3 and the ignimbrite, plus a co-ignimbrite ash-fall, have a volume of nearly 40 km3. Published welding models applied to the reejected welded blocks indicate an eruption duration of 15-20d, and a maximum average magma-discharge rate of 1.4 × 104 m3/s for the ignimbrite. This is low intensity when compared with available data from other ignimbrite-forming eruptions, and concurs with all the geological evidence presented. The total eruption duration was perhaps 15-31d, which is consistent with other estimates of the duration of large magnitude explosive silicic eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号