首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of methods to estimate spring flows in a karst aquifer   总被引:2,自引:0,他引:2  
Sepúlveda N 《Ground water》2009,47(3):337-349
Hydraulically and statistically based methods were analyzed to identify the most reliable method to predict spring flows in a karst aquifer. Measured water levels at nearby observation wells, measured spring pool altitudes, and the distance between observation wells and the spring pool were the parameters used to match measured spring flows. Measured spring flows at six Upper Floridan aquifer springs in central Florida were used to assess the reliability of these methods to predict spring flows. Hydraulically based methods involved the application of the Theis, Hantush-Jacob, and Darcy-Weisbach equations, whereas the statistically based methods were the multiple linear regressions and the technology of artificial neural networks (ANNs). Root mean square errors between measured and predicted spring flows using the Darcy-Weisbach method ranged between 5% and 15% of the measured flows, lower than the 7% to 27% range for the Theis or Hantush-Jacob methods. Flows at all springs were estimated to be turbulent based on the Reynolds number derived from the Darcy-Weisbach equation for conduit flow. The multiple linear regression and the Darcy-Weisbach methods had similar spring flow prediction capabilities. The ANNs provided the lowest residuals between measured and predicted spring flows, ranging from 1.6% to 5.3% of the measured flows. The model prediction efficiency criteria also indicated that the ANNs were the most accurate method predicting spring flows in a karst aquifer.  相似文献   

2.
In China, 9·5% of the landmass is karst terrain and of that 47,000 km2 is located in semiarid regions. In these regions the karst aquifers feed many large karst springs within basins of thousands of square kilometres. Spring discharges reflect the fluctuation of ground water level and variability of ground water storage in the basins. However, karst aquifers are highly heterogeneous and monitoring data are sparse in these regions. Therefore, for sustainable utilization and conservation of karst ground water it is necessary to simulate the spring flows to acquire better understanding of karst hydrological processes. The purpose of this study is to develop a parsimonious model that accurately simulates spring discharges using an artificial neural network (ANN) model. The karst spring aquifer was treated as a non‐linear input/output system to simulate the response of karst spring flow to precipitation and applied the model to the Niangziguan Springs, located in the east of Shanxi Province, China and a representative of karst springs in a semiarid area. Moreover, the ANN model was compared with a previous time‐lag linear model and it was found that the ANN model performed better. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
Comparison of flowpaths to a well and spring in a karst aquifer   总被引:3,自引:0,他引:3  
Toran L  Herman EK  White WB 《Ground water》2007,45(3):281-287
The permeability of some karst aquifers consists of networks of poorly integrated conduits and dissolution-widened fractures. The flow includes conduit flow, especially during storm recharge, but lacks the focused recharge into single master conduits that occurs in more highly developed karst systems. The proportions of conduit and dispersed flow are difficult to quantify in such systems. This study examines the flowpaths in a small karst watershed, based on comparing the physical and chemical response to storm flow at both a spring and a well. By conducting continuous monitoring at both locations, a better understanding of the flowpaths in a poorly integrated network was obtained. A more permeable flowpath to the spring leads to faster storm response and lower ion concentrations. The flowpath to and from the well is more complicated. The higher ion content and slower storm response suggest slower, more dispersed flowpaths. However, the well has greater variation in ion chemistry. Periodic recharge may dilute well concentrations due to faster (conduit or fracture) flowpaths. Although karst systems such as this are difficult to characterize, applying a variety of geochemical and physical monitoring techniques at multiple locations illustrates that the flowpaths can vary in both space and time.  相似文献   

4.
Using nitrate to quantify quick flow in a karst aquifer   总被引:3,自引:0,他引:3  
Mahler BJ  Garner BD 《Ground water》2009,47(3):350-360
In karst aquifers, contaminated recharge can degrade spring water quality, but quantifying the rapid recharge (quick flow) component of spring flow is challenging because of its temporal variability. Here, we investigate the use of nitrate in a two-endmember mixing model to quantify quick flow in Barton Springs, Austin, Texas. Historical nitrate data from recharging creeks and Barton Springs were evaluated to determine a representative nitrate concentration for the aquifer water endmember (1.5 mg/L) and the quick flow endmember (0.17 mg/L for nonstormflow conditions and 0.25 mg/L for stormflow conditions). Under nonstormflow conditions for 1990 to 2005, model results indicated that quick flow contributed from 0% to 55% of spring flow. The nitrate-based two-endmember model was applied to the response of Barton Springs to a storm and results compared to those produced using the same model with δ18O and specific conductance (SC) as tracers. Additionally, the mixing model was modified to allow endmember quick flow values to vary over time. Of the three tracers, nitrate appears to be the most advantageous because it is conservative and because the difference between the concentrations in the two endmembers is large relative to their variance. The δ18O-based model was very sensitive to variability within the quick flow endmember, and SC was not conservative over the timescale of the storm response. We conclude that a nitrate-based two-endmember mixing model might provide a useful approach for quantifying the temporally variable quick flow component of spring flow in some karst systems.  相似文献   

5.
Deep saline aquifers are commonly used for disposal and storage of various surface fluids. The target injection zone must be hydraulically isolated from overlying zones in order to ensure containment of the injected fluids. Improperly plugged nonoperational abandoned wells that penetrate the injection zone are the main potential leakage pathways. Leakage through such wells may cause an observable pressure signal in a zone overlying the injection zone; such a signal can be used to detect the leakage. In this paper we develop an analytical model to evaluate the pressure change induced by leakage through a well in a multilayer system. Unlike previous analytical models on the topic, our model uses a closed system, which may significantly affect the strength and behavior of the pressure signal induced by leakage. The analytical model is first presented for a two-layer system centered at the leaky well location. We evaluate the leakage-induced pressure change using the Laplace transform of Duhamel’s superposition integral, yielding the solution in the Laplace domain. We then derive a late-time asymptotic solution using the final value theorem, which suggests that the leakage rate becomes constant after sufficient time. We then obtain the multilayer solution by extending the two-layer solution and presenting it in matrix form in the Laplace domain. We apply the solution to three examples. In the first example, we apply the analytical model to a two-layer system, investigating its behavior and comparing the results with a numerical solution. In order to demonstrate behavior and potential applications of the multilayer analytical model, we present two multilayer examples: one with identical layers and another, replicating a CO2 storage site, with dissimilar layers. The leakage-induced pressure change does not necessarily decrease as the distance increases from the injection zone toward the surface.  相似文献   

6.
To answer one of the main questions of hydrogeologists implementing boreholes or working on pollution questions in a karst environment--i.e., where is the ground water?--numerous tools including geophysics are used. However, the contribution of geophysics differs from one method to the other. The magnetic resonance sounding (MRS) method has the advantage of direct detection of ground water over other geophysical methods. Eight MRSs were implemented over a known karst conduit explored and mapped by speleologists to estimate the MRS ability to localize ground water. Two direct current resistivity imageries (DC-2D imagery) were also implemented to check their capability to map a known cave. We found that the MRS is a useful tool to locate ground water in karst as soon as the quantity of water is enough to be detected. The threshold quantity is a function of depth and it was estimated by forward modeling to propose a support graph to hydrogeologists. The measured MRS's signals could be used to calculate transmissivity and permeability estimators. These estimators were used to map and to draw a cross section of the case study site, which underline accurately the known karst conduit location and depth. We also found that the DC-2D imagery could underline the karst structures: It was able to detect the known cave through its associated faults. We prepared a computer simulation to check the depth of such a cave to induce resistivity anomaly which could be measured in similar conditions.  相似文献   

7.
The aim of this research was to refine the actual conceptual model related to the activation of high‐altitude temporary springs within the carbonate Apennines in southern Italy. The research was carried out through geophysical, hydrogeological, hydrochemical and isotopic investigations at the Acqua dei Faggi experimental site during five hydrologic years. The research demonstrated that, in carbonate aquifers where low‐permeability faults cause the aquifer system to be compartmentalized, high‐altitude temporary springs may be recharged by groundwater. In such settings, neither surface water infiltration in karst systems nor perched temporary aquifers play a role of utmost importance. The rare (once or a few time a year) activation of such springs is due to the fact that groundwater unusually reach the threshold head that allows the spring to flow. The activation of the studied high‐altitude temporary spring also depended on relationships between a low‐permeability fault core and a karst system that locally interrupts the low‐permeability barrier. In fact, when the hydraulic head did not reach the karst system, the concentrated head loss within the fault core did not allow the spring to flow, because the groundwater entirely flowed through the fault towards the downgradient compartment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A structure model was used to analyse solute‐transport parameter estimates based on tracer breakthrough curves. In the model system, groundwater flow is envisioned to be organised in a complex conduit network providing a variety of short circuits with relative small carrying capacities along different erosion levels. The discharge through the fully filled conduits is limited owing to void geometries and turbulent flow; thus, a hierarchic overflow system evolves where conduits are (re‐)activated or dried up depending on the flow condition. Exemplified on the Lurbach–Tanneben karst aquifer, the applicability of the model approach was tested. Information derived from multi‐tracer experiments performed at different volumetric flow rates enabled to develop a structural model of the karst network, under constraint of the geomorphological and hydrological evolution of the site. Depending on the flow rate, groundwater is divided into up to eight flow paths. The spatial hierarchy of flow paths controls the sequence of flow path activation. Conduits of the topmost level are strongly influenced by reversible alteration processes. Sedimentation or blocking causes an overflow of water to the next higher conduit. Flow path specific dissolutional denudation rates were estimated using the temporal development of the partial discharge. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
10.
In this study, the fate and transport of aqueous benzene was investigated in a laboratory‐scale homogeneous aquifer by conducting a two‐dimensional plume test. Benzene solution was introduced as a pulse type along the width of the aquifer model through a recharge zone situated at the upper‐left part of the model and followed by a steady state flow. Solution samples were collected at various locations on the front side of the model to capture two‐dimensional plumes at discrete time intervals. The benzene plumes showed a moderate retardation relative to chloride plumes observed from the previous study conducted for the same aquifer model. The retardation factor was obtained from the ratio of travel distances of benzene peaks to chloride peaks from the injection point, computed using a line integral method. Mass recovery of aqueous benzene revealed that there was a significant reduction of benzene mass, indicating the occurrence of volatilization and/or irreversible sorption during transport. Thus, retardation along with volatilization and/or irreversible sorption may be important processes affecting the fate and transport of aqueous benzene in the aquifer model. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Karst Aquifer GIS‐based model (KAGIS model) is developed and applied to Mela aquifer, a small karst aquifer located in a Mediterranean region (SE Spain). This model considers different variables, such as precipitation, land use, surface slope and lithology, and their geographical heterogeneity to calculate both, the run‐off coefficients and the fraction of precipitation which contributes to fill the soil water reservoir existing above the aquifer. Evapotranspiration uptakes deplete water, exclusively, from this soil water reservoir and aquifer recharge occurs when water in the soil reservoir exceeds the soil field capacity. The proposed model also obtains variations of the effective porosity in a vertical profile, an intrinsic consequence of the karstification processes. A new proposal from the Nash–Sutcliffe efficiency index, adapted to arid environments, is presented and employed to evaluate the model's ability to predict the water table oscillations. The uncertainty in the model parameters is determined by the Generalized Likelihood Uncertainty Estimation method. Afterwards, when KAGIS is calibrated, wavelet analysis is applied to the resulting data in order to evaluate the variability in the aquifer behaviour. Wavelet analysis reveals that the rapid hydrogeological response, typical of a wide variety of karst systems, is the prevailing feature of Mela aquifer. This study proves that KAGIS is a useful tool to quantify recharge and discharge rates of karst aquifers and can be effectively applied to develop a proper management of water resources in Mediterranean areas.  相似文献   

12.
An aquifer model with a parameter characterizing the inhomogeneity of media(王六桥)(李善因)Anaquifermodelwithaparametercharacterizi...  相似文献   

13.
Developing a reliable model for aquifer vulnerability   总被引:1,自引:0,他引:1  
The assessment of aquifer vulnerability to pollution is crucial for planning a sound management strategy of groundwater quality protection and farmland fertilizer use. This study establishes a reliable model for aquifer vulnerability assessment with an excellent performance for predicting groundwater nitrate-N contamination in the Choushui River alluvial fan, Taiwan based on the DRASTIC method. To promote the prediction performance of aquifer vulnerability assessment, discriminant analysis (DA) was applied to determine the weights of factors in the DRASTIC model by comparing the model results with the observed nitrate-N data. Key factors influencing the presence of groundwater nitrate-N pollution were characterized for different concentration thresholds. The results of analysis reveal that the modified DRASTIC model using DA significantly improves prediction performance for aquifer vulnerability assessment, and groundwater protection zones can be determined correctly based on the modified DRASTIC index. Furthermore, the sensitivity of the factors in the modified DRASTIC model indicates that the depth to the groundwater and aquifer media are critical when the nitrate-N concentration is less than 3 mg/L, while the impact of the vadose zone plays a vital role in controlling nitrate-N pollution of over 5 mg/L.  相似文献   

14.
Numerous quantitative and qualitative variables control suspended sediment dynamics in karst systems. The objective of this study was to identify the hydrodynamic variables controlling the transport properties of particles in a karst aquifer (western Paris basin). The particle size distribution of suspended sediment infiltrating via a swallow hole was compared to that in discharge from a spring, allowing identification of the particle transport properties of the karst system. Hill and Smith analysis, a type of multivariate analysis that allows joint examination of quantitative and qualitative variables, was used to identify the hydrodynamic parameters controlling the transport properties of the suspended matter. The results demonstrate that the particle size distribution discharging at the karst spring is controlled by spring discharge and the hydraulic gradient of the system. The hydraulic gradient is defined by the piezometric level and the stage of the Seine River, which is in turn controlled by the tide. This study illustrates the use of Hill and Smith analysis to identify those variables which control suspended sediment transport. It also illustrates the application of this analysis to identify boundary conditions and evaluate variables which control the behaviour of the hydrologic system. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Coastal fresh water aquifers are an increasingly desirable resource. In a karstic aquifer, sea water intrusion occurs as a salt water wedge, like in porous media. However, preferential flow conduits may alter the spatial and temporal distribution of the salt water. This is typically the case when the outlet of the aquifer is a brackish spring. This paper shows that salinity and flow rate variations at a spring, where salinity is inversely proportional to discharge, can help to understand the hydrodynamic functioning of the aquifer and to locate the fresh water-sea water mixing zone deep inside the aquifer. The volume of water-filled conduit between the sea water intrusion zone and the spring outlet is calculated by the integral over time of the flow rate during the time lag between the flow rate increase and the salinity decrease as measured at the spring. In the example of the spring at Almyros of Heraklio (Crete, Greece), this time lag is variable, depending on the discharge, but the volume of water-filled conduit appears to be constant, which shows that the processes of salt water intrusion and mixing in the conduit are constant throughout the year. The distance between the spring and the zone where sea water enters the conduit is estimated and provides an indication of the position where only fresh water is present in the conduit.  相似文献   

16.
《Journal of Hydrology》1999,214(1-4):165-178
Karst aquifers are capable of transporting and discharging large quantities of suspended sediment, which can have an important impact on water quality. Here we present the results of intensive monitoring of sediment discharging from a karst spring in response to two storm events, one following a wet season and the other following a dry season; we describe temporal changes in total suspended solids (TSS), mineralogy, and particle size distribution. Peak concentrations of suspended sediment coincided with changes in aqueous chemistry indicating arrival of surface water, suggesting that much of the discharging sediment had an allochthonous origin. Concentrations of suspended sediment peaked 14–16 h after rainfall, and the bulk of the sediment (approximately 1 metric ton in response to each storm) discharged within 24 h after rainfall. Filtered material included brightly colored fibers and organic matter. Suspended sediments consisted of dolomite, calcite, quartz, and clay. Proportions of each mineral constituent changed as the aquifer response to the storm progressed, indicating varying input from different sediment sources. The hydraulic response of the aquifer to precipitation was well described by changes in parameters obtained from the particle size distribution function, and corresponded to changes seen in TSS and mineralogy. Differences between storms in the quantity and mineralogy of sediment transported suggest that seasonal effects on surface sediment supply may be important. The quantity of sediment discharging and its potential to sorb and transport contaminants indicates that a mobile solid phase should be included in contaminant monitoring and contaminant transport models of karst. Temporal changes in sediment quantity and characteristics and differences between responses to the two storms, however, demonstrate that the process is not easily generalized.  相似文献   

17.
Neural network simulation of spring flow in karst environments   总被引:2,自引:2,他引:0  
Daily discharges of two springs lying in a karstic environment were simulated for a period of 2.5 years with the use of a multi-layer perceptron back-propagation neural network. Two models were developed for the springs, one relying on the original data and another where the missing discharge values were supplemented by assuming linear relationships during base flow conditions. For both springs the mean square error of the two models did not differ significantly, with an improvement exhibited at the extremes, during the network’s training phase, by the model that utilized the extended data set, the results of which are reported here. The time lag between precipitation and spring discharge differed significantly for the two springs indicating that in karstic environments hydraulic behavior is dominated, even within a few hundred meters, by local conditions. Optimum training results were attained with a Levenberg–Marquardt algorithm resulting in a network architecture consisting of two input layer neurons, four hidden layer neurons, and one output layer neuron, the spring’s discharge. The neural network’s predictions captured the behavior for both springs and followed very closely the discontinuities in the discharge time series. Under-/over-estimation of observed discharges for the two springs remained below 3 %, with the exception of a few local maxima where the predicted discharges diverged more strongly from observed values. Inclusion of temperature data did not add to the improvement of predictions. Finally, optimum predictions were attained when past discharge data were added to the input record and discharge differentials rather than direct discharges were calculated resulting in elimination of any local maximum discrepancy between observed and predicted discharge values.  相似文献   

18.

The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei, Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.

  相似文献   

19.
The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei, Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.  相似文献   

20.
The quantitative assessment of geothermal water resources is important to the exploitation and utilization of geothermal resources. In the geothermal water systems the density of groundwater changes with the temperature, therefore the variations in hydraulic heads and temperatures are very complicated. A three-dimensional density-dependent model coupling the groundwater flow and heat transport is established and used to simulate the geothermal water flow in the karst aquifers in eastern Weibei, Shaanxi Province, China. The multilayered karst aquifer system in the study area is cut by some major faults which control the regional groundwater flow. In order to calibrate and simulate the effect of the major faults, each fault is discretized as a belt of elements with special hydrological parameters in the numerical model. The groundwater dating data are used to be integrated with the groundwater flow pattern and calibrate the model. Simulation results show that the calculated hydraulic heads and temperature fit with the observed data well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号