首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The lesser antilles — A discussion of the Island arc magmatism   总被引:1,自引:0,他引:1  
The active island arc of Lesser Antilles marks the junction between the Atlantic and Carribbean lithospheric plates. With the exception of the alkali basalts of Grenada, the volcanics of the arc can be regarded as belonging to the low-K, island arc, calc-alkaline suite. Although compositions ranging from basalt to rhyolite have been described, porphyritic andesite appears to be the dominant rock type on most volcanoes (intermediate centers). Variable amounts of basalt and basaltic andesite occur and rarely predominate over andesite (latter are basic centers), whereas the more silicic members are only occasionally found. The calc-alkaline suite is characterized by relatively high Al2O3 and CaO and low K2O, Rb and Ni. Variations, especially in the alkali elements, occur both with space and time. A characteristic feature of many of the volcanoes is the occurrence in the basalt and basaltic andesite volcanics of plutonic blocks, often showing cumulate textures. The blocks which ware composed of plagioclase — amphibole — olivine — clinopyroxene — magnetite are thought to be the products of fractionation. The differences between basic and intermediate centers is probably due to the frequency that the magma ascended to the surface or remained in high level chambers where fractionation occurred.  相似文献   

2.
An oceanographic survey by H.M.S. Hecla of the 1974 active submarine volcano (12°18′N and 61°38′W) revealed a crater at 190 m below sea level and bottom-sampling yielded fresh olivine basalt pyroclastics with phenocrysts of olivine, plagioclase and clinopyroxene. Megacrysts of amphilbole, up to 16 modal percent, are subsilicic and nepheline-normative ferroan pargasites. The mineral assemblage Ol+Cpx+Pl+Amph appears to have been in equilibrium in the Kick’em-Jenny melt prior to eruption, although published experimental studies on hydrous (H2O-saturated) or anhydrous alkali basaltic compositions have not yielded this mineral assemblage at any pressure. Interpolation between the experimentally determined phase relationships for dry and water-saturated alkali basaltic liquids indicates, however, that in an isobaric section at 5 kb the observed assemblage can exist in the water-undersaturated region. The Kick’em-Jenny olivine basalts belong to a suite of variably undersaturated basaltic rocks including alkali picrites and basanites, common in Grenada and the southern Grenadines, but although the available evidence indicates the importance of the presence of water in the genesis of these melts, their origin seems most likely to be associated with partial melting of upper mantle material rather than melting of amphibolite in an underthrust lithospheric slab.  相似文献   

3.
Physical and chemical analyses of distal tephra from the 1912 eruption of Novarupta, Alaska, show considerable variations in glass and mineral compositions. A combination of a 150°C range in temperature deduced from iron-titanium oxide geothermometry, and curved patterns in bivariant element plots of glass compositions indicate that a chamber of compositionally zoned magma existed prior to the eruption. Magma-mixing cannot explain these features. The magma chamber may have resembled the model recently proposed by McBirney (1980). A highly silicic, quartz-phyric magma with mean phenocryst compositions of An25 plagioclase, Fs42 orthopyroxene, at a temperature of 880°C and a water pressure of 1.4 kbar, was located above a more mafic, hotter magma, bearing phenocrysts of An45 plagioclase and Fs35, orthopyroxene.Our results on distal tephras compare favorably with those from a recently completed study at source by Hildreth (1983), suggesting that useful petrologic information about distant volcanoes can be obtained from both types of deposits. Compositionally heterogeneous abyssal tephra layers are common in the Gulf of Alaska. Eruptions from chambers of zoned magma may account for many of these layers.  相似文献   

4.
PUFF and HAZMAP, two tephra dispersal models developed for volcanic hazard mitigation, are used to simulate the climatic 1991 eruption of Mt. Pinatubo. PUFF simulations indicate that the majority of ash was advected away from the source at the level of the tropopause (~ 17 km). Several eruptive pulses injected ash and SO2 gas to higher altitudes (~ 25 km), but these pulses represent only a small fraction (~ 1%) of the total erupted material released during the simulation. Comparison with TOMS images of the SO2 cloud after 71 and 93 h indicate that the SO2 gas originated at an altitude of ~ 25 km near the source and descended to an altitude of ~ 22 km as the cloud moved across the Indian Ocean. HAZMAP simulations indicate that the Pinatubo tephra fall deposit in the South China Sea was formed by an eruption cloud with the majority of the ash concentrated at a height of 16–18 km. Results of this study demonstrate that the largest concentration of distal ash was transported at a level significantly below the maximum eruption column height (~ 40 km) and at a level below the calculated height of neutral buoyancy (~ 25 km). Simulations showed that distal ash transport was dominated by atmospheric circulation patterns near the regional tropopause. In contrast, the movement of the SO2 cloud occurred at higher levels, along slightly different trajectories, and may have resulted from gas/particle segregations that took place during intrusion of the Pinatubo umbrella cloud as it moved away from source.  相似文献   

5.
We studied the distribution of tephra deposits discharged by the basaltic (52–54% SiO2) explosive eruption of 1973 on Tyatya Volcano (Kunashir I., Kuril Islands). We made maps showing lines of equal tephra thickness (isopachs) and lines of maximum size of pyroclastic particles (isopleths). These data were used to find the parameters of explosive activity using the standard techniques for each of the two phases of this eruption separately. The first, phreatomagmatic, phase discharged 0.008 km3 of tephra during the generation of maars on the volcano’s northern slope. The tephra mostly consisted of fragmented host rocks with admixtures of fragments of low vesiculated juvenile basalt. The phase lasted 20 hours, the rate of pyroclastic discharge was 2 × 105 kg/s; the eruptive plume reached heights of 4–6 km with wind speeds within 10 m/s. The second, magmatic, phase discharged 0.07 km3 of tephra during the generation of the Otvazhnyi scoria cone on the volcano’s southeastern slope. The tephra mostly consisted of juvenile basaltic scoria. The highly explosive Plinian part of this phase lasted 36 hours, the rate of pyroclastic discharge was 8 × 105 kg/s; the eruptive plume reached heights of 6–8 km with wind speeds of 10–20 m/s. The total tephra volume discharged by the eruption was approximately 0.08 km3; the total amount of ejected pyroclastic material (including the resulting monogenic edifices) was 0.11 km3; the volume of erupted magma was 0.05 km3 (the conversion was based on 2800 kg/m3 density); the volcanic explosivity index, or VEI, was 3. The production rate of the Tyatya plumbing system is estimated as 3 × 105 m3 magma per annum.  相似文献   

6.
7.
The thickness,volume and grainsize of tephra fall deposits   总被引:1,自引:5,他引:1  
An improved empirical method for the plotting of field data and the calculation of tephra fall volumes is presented. The widely used area plots of ln(thickness) against ln(isopach area) are curved, implying an exponential thinning law. Use of ln(thickness)–(area)1/2 diagrams confirm the exponential dependence of many parameters (e.g. thickness, maximum and median clast size) with distance from source, producing linear graphs and allowing volumes to be calculated without undue extrapolation of field data. The agreement between theoretical models of clast dispersion and observation is better than previously thought. Two new quantitative parameters are proposed which describe the rates of thinning of the deposit (b t the thickness half-distance) and the maximum clast size (b c the clast half-distance). Many deposits exhibit different grainsize and thickness thinning rates, with the maximum clast size diminishing 1–3 times slower than the thickness. This implies that the entrained grainsize population influences the morphologic and granulometric patterns of the resulting deposit, in addition to the effects of column height and wind-speed. The grainsize characteristics of a deposit are best described by reference to the half-distance ratio (b c /b t ). A new classification scheme is proposed which plots the half-distance ratio against the thickness half-distance and may be contoured in terms of the column height.  相似文献   

8.
The mass distribution and sorting of tephra produced in the plinian phase of the 1970 Hekla eruption was controlled by the particle size distribution, the height of the eruption column, and velocity of transport. Near the volcano the mass distribution of soluble fluorine was controlled by particle size of the deposits, but approaches the mass distribution of the tephra at longer distances. Adsorbed soluble fluorine reaches a maximum at a distance from the volcano determined by the velocity of the transporting medium.SEM studies show the soluble fluorine to be chemically adsorbed on the surface of tephra particles. The adsorption is shown by experiment to occur at temperatures below 600°C in the cooling eruption column. Evaluation of reactions in the eruption column leads to the conclusion that formation of water soluble compounds adhering to tephra is principally controlled by environmental factors and to a lesser degree by the composition of the volcanic gas phase.  相似文献   

9.
Abstract Tyatya Volcano, situated in Kunashir Island at the southwestern end of Kuril Islands, is a large composite stratovolcano and one of the most active volcanoes in the Kuril arc. The volcanic edifice can be divided into the old and the young ones, which are composed of rocks of distinct magma types, low‐ and medium‐K series, respectively. The young volcano has a summit caldera with a central cone. Recent eruptions have occurred at the central cone and at the flank vents of the young volcano. We found several distal ash layers at the volcano and identified their ages and sources, that is, tephras of ad 1856, ad 1739, ad 1694 and ca 1 Ka derived from three volcanoes of Hokkaido, Japan, and caad 969 from Baitoushan Volcano of China/North Korea. These could provide good time markers to reveal the eruptive history of the central cone, which had continued intermittently with Strombolian eruptions and lava flow effusions since before 1 Ka. Relatively explosive eruptions have occurred three times at the cone during the past 1000 years. We revealed that, topographically, the youngest lava flows from the cone are covered not by the tephra of ad 1739 but by that of ad 1856. This evidence, together with a report of dense smoke rising from the summit in ad 1812, suggests that the latest major eruption with lava effusion from the central cone occurred in this year. In 1973, after a long period of dormancy, short‐lived phreatomagmatic eruptions began to occur from fissure vents at the northern flank of the young volcano. This was followed by large eruptions of Strombolian to sub‐Plinian types occurring from several craters at the southern flank. The 1973 activity is evaluated as Volcanic Explosivity Index = 4 (approximately 0.2 km3), the largest eruption during the 20th century in the southwestern Kuril arc. The rocks of the central cone are strongly porphyritic basalt and basaltic andesite, whereas the 1973 scoria is aphyric basalt, suggesting that magma feeding systems are definitely different between the summit and flank eruptions.  相似文献   

10.
11.
The eruption of Novarupta within the Katmai Volcanic Cluster, south-west Alaska, in June 1912 was the most voluminous eruption of the twentieth century but the distal distribution of tephra deposition is inadequately quantified. We present new syntheses of published tephrostratigraphic studies and a large quantity of previously un-investigated historical records. For the first time, we apply a geostatistical technique, indicator kriging, to integrate and interpolate such data. Our results show evidence for tephra deposition across much of Alaska, Yukon, the northern Pacific, western British Columbia and northwestern Washington. The most distal tephra deposition was observed around 2,500?km downwind from the volcano. Associated with tephra deposition are many accounts of acid deposition and consequent impacts on vegetation and human health. Kriging offers several advantages as a means to integrate and present such data. Future eruptions of a scale similar to the 1912 event have the potential to cause widespread disruption. Historical records of tephra deposition extend far beyond the limit of deposition constrained by tephrostratigraphic records. The distal portion of tephra fallout deposits is rarely adequately mapped by tephrostratigraphy alone; contemporaneous reports of fallout can provide important constraints on the extent of impacts following large explosive eruptions.  相似文献   

12.
Sumisu volcano was the site of an eruption during 30–60 ka that introduced ∼48–50 km3 of rhyolite tephra into the open-ocean environment at the front of the Izu-Bonin arc. The resulting caldera is 8 × 10 km in diameter, has steep inner walls 550–780 m high, and a floor averaging 900 m below sea level. In the course of five research cruises to the Sumisu area, a manned submersible, two ROVs, a Deep-Tow camera sled, and dredge samples were used to study the caldera and surrounding areas. These studies were augmented by newly acquired single-channel seismic profiles and multi-beam seafloor swath-mapping. Caldera-wall traverses show that pre-caldera eruptions built a complex of overlapping dacitic and basaltic edifices, that eventually grew above sea level to form an island about 200 m high. The caldera-forming eruption began on the island and probably produced a large eruption column. We interpret that prodigious rates of tephra fallback overwhelmed the Sumisu area, forming huge rafts of floating pumice, choking the nearby water column with hyperconcentrations of slowly settling tephra, and generating pyroclastic gravity currents of water-saturated pumice that traveled downslope along the sea floor. Thick, compositionally similar pumice deposits encountered in ODP Leg 126 cores 70 km to the south could have been deposited by these gravity currents. The caldera-rim, presently at ocean depths of 100–400 m, is mantled by an extensive layer of coarse dense lithic clasts, but syn-caldera pumice deposits are only thin and locally preserved. The paucity of syn-caldera pumice could be due to the combined effects of proximal non-deposition and later erosion by strong ocean currents. Post-caldera edifice instability resulted in the collapse of a 15° sector of the eastern caldera rim and the formation of bathymetrically conspicuous wavy slump structures that disturb much of the volcano’s surface.  相似文献   

13.
A simple semi-analytical model for ash-fall deposit was applied to reconstruct the tephra deposits of the sub-Plinian 472 AD eruption of Vesuvius, Italy, which is of the scale of the reference eruptive scenario for the emergency planning, at Vesuvius. Applying a novel least-squares method, the bulk grain-size distribution, the total mass, and the eruption column height were obtained by fitting the computed ground load and granulometries with the observed ones. The analysis of the effect of three different weighting factors in the minimization procedure was also performed. Results showed that the statistical weighting factor produced the minimum bias. The best correlation between calculated and measured deposit was found, even though the quantity of the input data was not very high, as it commonly occurs for several ancient eruptions. Model results were also in agreement with estimations provided by other independent methods.  相似文献   

14.
Some recent calc-alkaline andesites and dacites from southern and central Martinique contain basic xenoliths belonging to two main petrographic types:
  • The most frequent one has a hyalodoleritic texture (« H type ») with hornblende + plagioclase + Fe-Ti oxides, set in an abundant glassy and vacuolar groundmass.
  • The other one exhibits a typical porphyritic basaltic texture (« B type ») and mineralogy (olivine + plagioclase + orthopyroxene + clinopyroxene + Fe-Ti oxides and scarce, or absent hornblende).
  • Gradual textural and mineralogical transitions occur between these two types (« I type ») with the progressive development of hornblende at the expense of olivine and pyroxenes. Mineralogical and chemical studies show no primary compositional correlations between the basaltic xenoliths and their host lavas, thus demonstrating that the former are not cognate inclusions; they are remnants of basaltic liquids intruded into andesitic to dacitic magma chambers. This interpretation is strengthened by the typical calc-alkaline basaltic composition of the xenoliths, whatever their petrographic type (« H », « I » or « B »). The intrusion of partly liquid, hot basaltic magma into colder water-saturated andesitic to dacitic bodies leads to drastic changes in physical conditions. The two components; the basaltic xenoliths are quenched and homogeneized with their host lavas with respect to To;fO2 andpH2O conditions. « H type » xenoliths represent original mostly liquid basalts in which such physical changes lead to the formation of hornblende and the development of a vacuolar and hyalodoleritic texture. The temperature increase of the acid magma depends on the amount of the intruding basalt and on the thermal contrast between the two components. The textural diversity which characterizes the xenoliths reflects the cooling rate of the basaltic fragments and/or their position relative to the basaltic bodies (chilled margins or inner, more crystallized, portions). In addition to physical equilibration (T, fO2) between the magmas, mixing involves:
  • mechanical transfer of phenocrysts from one component to another, in both directions;
  • volatile transfer to the basaltic xenoliths, with chemical exchanges.
  • It is here demonstrated that a short period of time (some ten hours to a few days) separates the mixing event from the eruption, outlining the importance of magma mixing in the triggering of eruption. The common occurrence of basaltic xenoliths (generally of « H » type) in calc-alkaline lavas is emphasized, showing that this mechanism is of first importance in calc-alkaline magma petrogenesis.  相似文献   

    15.
    16.
    A model for sedimentation from turbulent suspensions predicts that tephra concentration decreases exponentially with time in an ascending volcanic column and in the overlying umbrella cloud. For grain-size distributions typical of plinian eruptions application of the model predicts for thickness variations in good agreement with the exponential thinning observed in tephra fall deposits. The model also predicts a proximal region where fallout from the plume margins results in a more rapid decrease in thickness so that the deposit shows two segments on a thickness versus distance plot. Several examples of deposits with two segments are known. The distance at which the two segments intersect is a measure of eruption column height. The thickness half-distance ( equivalent to the dispersal index of Walker) is strongly correlated with column height, but is also weakly dependent on grain-size distribution of the ejecta. For a dispersal index of 500 km2 (the plinian/subplinian boundary of Walker) column heights between 14 and 18 km are calculated. For ultraplinian deposits with D>50000 km2 column heights of at least 45 km are implied. Model grain-size distributions of the deposits have sorting values comparable to those observed in tephra fall deposits formed from eruption columns in a weak or negligible cross-wind. Median diameter decreases exponentially with distance as is observed. Sorting () improves with distance as is observed in plinian deposits in a weak wind. However, tephra fall deposits formed in strong winds do not show improved sorting with distance and proximal deposits are typically somewhat better sorted than the model calculations. Differences are attributed to the influence of wind which disperses particles further than predicted in our model and which has an increasing influence as particle size decreases.  相似文献   

    17.
    The Rio Caliente ignimbrite is a multi-flow unit orcompound ignimbrite formed during a major late Quaternary explosive rhyolitic eruption of La Primavera volcano, Mexico. The eruption sequence of the ignimbrite is complex and it occurs between lower and upper plinian air-fall deposits. It is, therefore, anintraplinian ignimbrite. Air-fall layers, pyroclastic surge, mudflow and fluviatile reworked pumice deposits also occur interbedded between ignimbrite flow units. A chaotic near-vent facies of the ignimbrite includes co-ignimbrite lag breccias segregated from proximal pumice flows. The facies locates a central vent but one which could not have been associated with a well defined edifice. Many of the lithics in the exposed lag breccias and near-vent facies of the ignimbrite appear to be fragments of welded Rio Caliente ignimbrite, and indicate considerable vent widening, or migration, during the eruption. Nearer vent the ignimbrite is thickest and composed of the largest number of flow units. Here it is welded and is a simple cooling unit. Evidence suggests that it was only the larger thicker pumice flows that escaped to the outer parts of the sheet. Detailed analysis of four flow units indicates that the pumice flows were generally poorly expanded, less mobile flows which would be produced by collapse of low eruption columns. The analogy of a compound ignimbrite with a compound lava flow is, therefore, good — a compound lava flow forms instead of a simple one when the volumetric discharge rate (or intensity) is low, and in explosive eruptions this predicts lower eruption column heights. A corollary is that the ignimbrite has a high aspect ratio. The complex eruption sequence shows the reinstatement of plinian activity several times during the eruption after column collapse occurred. This, together with erosional breaks and evidence that solidified fragments of already welded ignimbrite were re-ejected, all suggest the eruption lasted a relatively significant time period. Nearly 90 km3 of tephra were erupted. The associated plinian pumice fall is one of the largest known having a volume of 50 km3 and the ignimbrite, plus a co-ignimbrite ash-fall, have a volume of nearly 40 km3. Published welding models applied to the reejected welded blocks indicate an eruption duration of 15-20d, and a maximum average magma-discharge rate of 1.4 × 104 m3/s for the ignimbrite. This is low intensity when compared with available data from other ignimbrite-forming eruptions, and concurs with all the geological evidence presented. The total eruption duration was perhaps 15-31d, which is consistent with other estimates of the duration of large magnitude explosive silicic eruptions.  相似文献   

    18.
    The Katla volcano in Iceland is characterized by subglacial explosive eruptions of Fe–Ti basalt composition. Although the nature and products of historical Katla eruptions (i.e. over the last 1,100 years) at the volcano is well-documented, the long term evolution of Katla’s volcanic activity and magma production is less well known. A study of the tephra stratigraphy from a composite soil section to the east of the volcano has been undertaken with emphasis on the prehistoric deposits. The section records ∼8,400 years of explosive activity at Katla volcano and includes 208 tephra layers of which 126 samples were analysed for major-element composition. The age of individual Katla layers was calculated using soil accumulation rates (SAR) derived from soil thicknesses between 14C-dated marker tephra layers. Temporal variations in major-element compositions of the basaltic tephra divide the ∼8,400-year record into eight intervals with durations of 510–1,750 years. Concentrations of incompatible elements (e.g. K2O) in individual intervals reveal changes that are characterized as constant, irregular, and increasing. These variations in incompatible elements correlate with changes in other major-element concentrations and suggest that the magmatic evolution of the basalts beneath Katla is primarily controlled by fractional crystallisation. In addition, binary mixing between a basaltic component and a silicic melt is inferred for several tephra layers of intermediate composition. Small to moderate eruptions of silicic tephra (SILK) occur throughout the Holocene. However, these events do not appear to exhibit strong influence on the magmatic evolution of the basalts. Nevertheless, peaks in the frequency of basaltic and silicic eruptions are contemporaneous. The observed pattern of change in tephra composition within individual time intervals suggests different conditions in the plumbing system beneath Katla volcano. At present, the cause of change of the magma plumbing system is not clear, but might be related to eruptions of eight known Holocene lavas around the volcano. Two cycles are observed throughout the Holocene, each involving three stages of plumbing system evolution. A cycle begins with an interval characterized by simple plumbing system, as indicated by uniform major element compositions. This is followed by an interval of sill and dyke system, as depicted by irregular temporal variations in major element compositions. This stage eventually leads to a formation of a magma chamber, represented by an interval with increasing concentrations of incompatible elements with time. The eruption frequency within the cycle increases from the stage of a simple plumbing system to the sill and dyke complex stage and then drops again during magma chamber stage. In accordance with this model, Katla volcano is at present in the first interval (i.e. simple plumbing system) of the third cycle because the activity in historical time has been characterized by uniform magma composition and relatively low eruption frequency.  相似文献   

    19.
    20.
    Long-range dispersal of volcanic ash can disrupt civil aviation over large areas, as occurred during the 2010 eruption of Eyjafjallaj?kull volcano in Iceland. Here we assess the hazard for civil aviation posed by volcanic ash from a potential violent Strombolian eruption of Somma-Vesuvius, the most likely scenario if eruptive activity resumed at this volcano. A Somma-Vesuvius eruption is of concern for two main reasons: (1) there is a high probability (38?%) that the eruption will be violent Strombolian, as this activity has been common in the most recent period of activity (between AD 1631 and 1944); and (2) violent Strombolian eruptions typically last longer than higher-magnitude events (from 3 to 7?days for the climactic phases) and, consequently, are likely to cause prolonged air traffic disruption (even at large distances if a substantial amount of fine ash is produced such as is typical during Vesuvius eruptions). We compute probabilistic hazard maps for airborne ash concentration at relevant flight levels using the FALL3D ash dispersal model and a statistically representative set of meteorological conditions. Probabilistic hazard maps are computed for two different ash concentration thresholds, 2 and 0.2?mg/m3, which correspond, respectively, to the no-fly and enhanced procedure conditions defined in Europe during the Eyjafjallaj?kull eruption. The seasonal influence of ash dispersal is also analysed by computing seasonal maps. We define the persistence of ash in the atmosphere as the time that a concentration threshold is exceeded divided by the total duration of the eruption (here the eruption phase producing a sustained eruption column). The maps of averaged persistence give additional information on the expected duration of the conditions leading to flight disruption at a given location. We assess the impact that a violent Strombolian eruption would have on the main airports and aerial corridors of the Central Mediterranean area, and this assessment can help those who devise procedures to minimise the impact of these long-lasting low-intensity volcanic events on civil aviation.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号