共查询到17条相似文献,搜索用时 62 毫秒
1.
针对观测向量和系数矩阵权分配不合理、验前随机模型不准确的情况,以部分误差变量(partial errors-in-variables,PEIV)模型为基础,推导了附有相对权比的总体最小二乘平差算法;通过在平差准则中加入相对权比,自适应调整观测向量和系数矩阵随机元素对模型参数估计的贡献,给出了确定相对权比的验前单位权方差法和判别函数最小化迭代算法,该算法普遍适用于一般性的系数矩阵和权矩阵。通过直线拟合和坐标转换模拟算例的比较分析,发现当观测值和系数矩阵的验前单位权方差已知,且较准确时,验前单位权方差法确定相对权比和参数估计的效果较好;而以${{\overline{\mathit{{\mathit{\Phi}}}}}_{1}}\left( \hat{\varepsilon },{{{\hat{\varepsilon }}}_{a}} \right)={{\hat{\varepsilon }}^{\text{T}}}\hat{\varepsilon }+\hat{\varepsilon }_{a}^{\text{T}}{{\hat{\varepsilon }}_{a}} $作为判别函数是判别函数最小化迭代算法中效果最好的。 相似文献
2.
研究了基于加权总体最小二乘的重心化布尔沙模型的坐标转换算法,针对坐标转换中原始坐标和目标坐标均存在误差的问题,根据误差的影响程度不同而给予不同的权值,利用加权总体最小二乘方法求解转换参数。坐标重心化的方法可以解决布尔沙模型在局部地区容易出现病态的问题,将两种方法结合可以很好地提高坐标转换的精度,通过实例验证了该方法的优越性。 相似文献
3.
加权总体最小二乘没有考虑观测数据中可能存在的粗差,本文基于IGG权函数,采用选权迭代法求解加权总体最小二乘。结合模拟数据和真实数据,系统地比较了加权总体最小二乘方法、基于Huber权函数的稳健加权总体最小二乘方法和基于IGG权函数的稳健加权总体最小二乘方法的系数估计和误差估计,通过对比分析表明,两种稳健加权总体最小二乘方法的参数估计结果比加权总体最小二乘方法更加可靠,且以基于IGG权函数的稳健加权总体最小二乘方法为最优。 相似文献
4.
5.
在测量数据处理中,最为经典的处理方法是最小二乘法,认为误差只是包含在观测向量当中,系数矩阵中不包含误差。实际上由于模型等因素,系数矩阵中经常存在着误差。为了平差的严密性和精确性,采用一种可以同时顾及观测向量误差和系数矩阵误差的总体最小二乘方法,应用于测量数据处理和坐标转换中,得到更符合实际的平差处理,获得更准确的坐标转换参数。 相似文献
6.
在处理坐标转换数据的方法中,通常使用的方法是最小二乘法,但其由于不能顾及系数矩阵误差而具有一定的局限性,导致坐标转换结果的可靠性较差。因此,需要一种新的方法来弥补最小二乘法的不足。本文引入总体最小二乘法和混合最小二乘法,采用仿真数据求解坐标转换七参数,并将结果与其仿真值进行比较,证明采用混合最小二乘法得到的坐标转换七参数更接近于理论值。 相似文献
7.
8.
针对传统的应用最小二乘法建立高斯-马尔科夫(G-M)模型实现坐标系统转换的方法导致转换模型参数精度低下的问题,该文提出一种基于总体最小二乘算法的坐标系统转换方法。考虑到粗差会导致控制点坐标精度差异较大,因此根据稳健估计理论进行迭代定权,在总体最小二乘算法下建立G-M模型,以便求解转换模型参数,并通过算例比较不同算法的转换精度。实验结果表明:基于稳健估计的总体最小二乘抗差算法实现的空间坐标转换精度高于传统方法的转换精度。 相似文献
9.
当观测向量和系数矩阵不等精度时,利用系数矩阵元素和观测向量之间的映射关系,通过误差传播定律推导了系数矩阵的协因数阵,算例结果表明,改进的加权总体最小二乘法能够得到正确、合理的参数,且本文方法简单、实用。 相似文献
10.
针对加权总体最小二乘平差模型中系数矩阵具有结构性的问题,该文设计了一种顾及系数矩阵结构性的加权总体最小二乘迭代解法:首先,利用非线性最小二乘平差方法将总体最小二乘模型线性化;然后,采用结构矩阵的方法顾及系数矩阵的重复元素和常数项,通过间接平差的原理推导了顾及系数矩阵结构性的加权总体最小二乘迭代公式,可适用于加权总体最小二乘的参数估计;最后,通过算例分析并与其他算法进行比较,验证了该算法的有效性和可行性。 相似文献
11.
12.
13.
对比总体最小二乘方法与最小二乘方法在相机标定中的适用性及优越性。在相机标定中,由于像点坐标和对应的地面点坐标均存在误差,因此采用总体最小二乘方法对误差方程中的系数矩阵及观测向量同时改正,能够建立更加合理的计算模型。文中以相机标定两步法为例,通过实例解算,证明利用总体最小二乘法能够得到精度更高的相机标定参数解。 相似文献
14.
在平面四参数坐标转换模型中,观测向量和误差方程系数矩阵中部分元素都存在误差。提出一种使用整体最小二乘迭代法求解坐标转换四参数的新方法,只改正系数矩阵中含误差的元素,同时使系数矩阵中不同位置的相同元素具有相同改正数,理论上更严谨。设计了平面四参数模型坐标转换实验数据,通过与经典最小二乘、整体最小二乘、混合整体最小二乘3种方法结果对比,验证了新方法的可行性且解算结果更优。 相似文献
15.
16.