首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
金沙江结合带由于地质构造发育,地震活动频繁,河谷切割强烈,岸坡高陡狭窄,岩体极为破碎,历史上发生过多起大型滑坡堵江事件。以白格滑坡两次堵江事件(2018年10月11日、 2018年11月3日)为例,采用2009年12月4日至2020年10月16日多期、多源卫星遥感数据源,通过遥感判识、对比分析等方法对滑坡体滑前斜坡变形特征、滑后滑坡堆积特征、滑后斜坡残留体变形特征进行特大型堵江滑坡链式特征遥感动态分析。根据多期遥感影像,将白格滑坡变形特征划分为早期滑动变形阶段(2009—2011年)、稳定变形阶段(2011—2015年)、快速变形阶段(2015—2017年)、剧烈变形阶段(2017—2018年)、变形破坏阶段(2018年以后)等5个阶段。根据滑坡第一次滑后的变形破坏特征,将滑坡划分为滑源区、铲刮区、堆积区以及拉裂变形区。根据滑坡第二次滑后的变形破坏特征,将滑坡划分为二次滑坡滑源区、二次滑坡堆积区(堰塞体)、二次铲刮(堆积)区、二次铲刮区影响区以及拉裂变形区。基于上述研究成果,对白格滑坡灾害链式特征进行总结分析,为金沙江结合带高位远程滑坡灾害链式特征研究提供参考。  相似文献   

2.
周礼  范宣梅  许强  杨帆  郭晨 《工程地质学报》2019,27(6):1395-1404
2018年10月、11月于金沙江川藏交界处江达县波罗乡白格村先后发生两次体积约2400×104 m3和850×104 m3的滑坡,两次滑坡平均运动距离1400 m,堵塞金沙江形成堰塞湖。首次形成的堵江滑坡坝天然溃决,未造成人员伤亡;然而第2次滑坡堵塞第1次滑坡自然溃口,导致堰塞湖库容迅速增加到3.85×108 m3。政府部门立即开展抢险工作,通过人工修建溢洪道的方法成功泄洪,极大程度上降低洪水风险。本文利用PFC3D颗粒流软件模拟两次滑坡的发生、运动、堆积过程,并在反演结果的基础上对白格滑坡滑源区残留潜在不稳定部分未来失稳的运动路径和堆积范围进行预测,对其危险性进行科学评价。结果表明:(1)滑坡在重力作用下失稳,除了受初始势能的影响外,微地貌也是决定滑坡运动路径与距离的关键因素之一;(2)PFC3D颗粒流数值模拟方法适用于类似于白格滑坡这类碎屑流类型的滑坡,两次滑坡反演得到的堆积厚度、堆积范围均与真实结果相近;(3)利用两次事件反演所得参数,可以预测若滑源区潜在不稳定部分同时失稳,则形成约70 m高的滑坡坝,可能再次堵塞金沙江。  相似文献   

3.
2018年10月11日,西藏昌都市江达县波罗乡白格村发生大规模滑坡,约有3165×104 m3的山体高速冲入金沙江形成堰塞坝,13日9时堰塞坝体被自然泄流冲开,堰塞湖威胁解除。11月3日,在时隔短短23 d后,该滑坡后缘约215×104 m3高位滑体再次发生滑动破坏,高速运动的滑体沿途铲刮坡体并冲入金沙江,再次形成堰塞坝。现场调查研究得出白格滑坡主要是受其后缘逆冲分支断层f2(不整合接触面)控制,并在长期重力卸荷、降雨和地下水的反复浸润作用影响下,最终整体失稳破坏。通过对滑坡演化过程分析得出,其变形破坏过程可分为5个阶段,即:后缘蠕滑和沉降下错阶段(Ⅰ)、坡体裂缝发展、贯通阶段(Ⅱ)、整体启动"锁固端"剪断阶段(Ⅲ)、高速凌空滑跃阶段(Ⅳ)、碰撞、破碎、堆积成坝阶段(Ⅴ)。一期变形破坏机制模式可归结为蠕滑-下错-剪断-滑跃式,破坏方式表现为推移式,后期临空条件较好,破坏将以牵引式为主。在此基础上,结合残留强变形区块(K1、K2、K3)及其周边影响区形貌特征和变形迹象,对其变形破坏特征和发展趋势进行了预测分析,认为后期强变形区总体将以渐进解体方式破坏为主。  相似文献   

4.
2018年10月11日和11月3日,在西藏自治区江达县波罗乡白格村与四川省白玉县绒盖乡则巴村交界处金沙江西藏岸(右岸)先后两次发生大规模高位滑坡,堵塞金沙江,形成堰塞湖。尤其是第二次滑坡-堰塞堵江,因坝体过高(堰塞湖水位可到50 m),堰塞湖库容较大(超过5×108 m3),不得不通过修建导流槽主动降低堰塞湖水位。经过人工干预,第二次堰塞体于11月13日被完全冲开,险情得以解除,但下泄的洪水在下游四川、云南境内仍造成严重的洪涝灾害。本文通过对两次滑坡的现场地质调查,结合历史遥感影像解译、InSAR监测、无人机航拍、地面变形监测等技术手段,查明了白格滑坡区斜坡的变形历史、两次滑坡及其堰塞堵江的基本特征及其动态演化特征,简述了第二次滑坡-堰塞体的应急处置以及为保证现场施工安全所开展的"实战性"监测预警工作。在同一部位先后两次发生大规模滑坡堵江事件并对其采取了及时有效的应急处置,其案例非常典型,对类似地质灾害事件具有很好的参考借鉴意义。  相似文献   

5.
金沙江上游地形切割强烈、山高谷深,为典型的高山峡谷区,受金沙江断裂带的影响,斜坡完整性差、岩体支离破碎,极易发生山体滑坡。根据遥感影像上滑坡地质灾害隐患的色调、平面形态、变形标志、微地貌等特征,建立了遥感解译标志,在金沙江流域直门达—石鼓段共识别出滑坡地质灾害隐患点87处,其中大型40处、特大型47处,结合区域地理、地质环境特征,分析了其基本特征和空间分布规律。研究区堵江滑坡地质灾害隐患具有明显的链式特征,大致可划为滑坡-堵江灾害链、崩塌-滑坡-堵江灾害链、滑坡-泥石流-堵江灾害链等3种类型,分别以色拉滑坡、汪布顶滑坡、探戈滑坡为例,基于光学遥感技术对其变形特征、链式特征进行了详细分析。从地理位置上看,金沙江断裂带明显控制了金沙江干流直门达—石鼓段的平面展布,新构造运动在断裂带各段活动周期、强度存在差异性,中段和南段活动性较强、应变积累更快,地震作用可能相对频繁,为巴塘以南的金沙江两岸有利斜坡区发生堵江滑坡提供了有利的区域地质环境背景。  相似文献   

6.
金沙江上游沃达滑坡自1985年开始出现变形,现今地表宏观变形迹象明显,存在进一步失稳滑动和堵江的风险。采用遥感解译、地面调查、工程地质钻探和综合监测等方法,分析了沃达滑坡空间结构和复活变形特征,阐明了滑坡潜在复活失稳模式,并采用经验公式计算分析了滑坡堵江危险性。结果表明:沃达滑坡为一特大型滑坡,体积约28.81×106 m3,推测其在晚更新世之前发生过大规模滑动;滑坡堆积体目前整体处于蠕滑变形阶段,局部处于加速变形阶段;复活变形范围主要集中在中前部,且呈现向后渐进变形破坏特征,复活区右侧变形比左侧强烈。滑坡存在浅层和深层两级滑面,平均埋深分别约15.0,25.5 m,相应地可能出现两种潜在失稳模式:滑坡强变形区沿浅层滑带滑动失稳时,形成的堵江堰塞坝高度约87.2 m;滑坡整体沿深层滑带滑动失稳时,形成的堵江堰塞坝高度约129.2 m。沃达滑坡存在形成滑坡-堵江-溃决-洪水链式灾害的危险性,建议进一步加强滑坡监测,针对性开展排水、加固等防治工程。  相似文献   

7.
金沙江上游地形切割强烈、山高谷深,为典型的高山峡谷区,受金沙江断裂带的影响,斜坡完整性差、岩体支离破碎,极易发生山体滑坡。根据遥感影像上滑坡地质灾害隐患的色调、平面形态、变形标志、微地貌等特征,建立了遥感解译标志,在金沙江流域直门达—石鼓段共识别出滑坡地质灾害隐患点87处,其中大型40处、特大型47处,结合区域地理、地质环境特征,分析了其基本特征和空间分布规律。研究区堵江滑坡地质灾害隐患具有明显的链式特征,大致可划为滑坡-堵江灾害链、崩塌-滑坡-堵江灾害链、滑坡-泥石流-堵江灾害链等3种类型,分别以色拉滑坡、汪布顶滑坡、探戈滑坡为例,基于光学遥感技术对其变形特征、链式特征进行了详细分析。从地理位置上看,金沙江断裂带明显控制了金沙江干流直门达—石鼓段的平面展布,新构造运动在断裂带各段活动周期、强度存在差异性,中段和南段活动性较强、应变积累更快,地震作用可能相对频繁,为巴塘以南的金沙江两岸有利斜坡区发生堵江滑坡提供了有利的区域地质环境背景。  相似文献   

8.
为了了解青藏高原察达高速远程滑坡的运动过程与形成机理,运用遥感测绘、无人机地形测绘和现场勘查资料对滑坡进行分区,对滑坡形成机理进行研究,并利用PFC2D数值模拟对地震工况下滑坡运动过程进行模拟.将察达高速远程滑坡分为源区,流通区和堆积区;数值模拟结果得到滑坡平均运动速度为15~20 m/s,运动时间150 s,最大运动距离为2 800 m.察达滑坡为地震条件下诱发的高速远程滑坡,源区砾岩对上部堆积体后缘铲刮推移,使得上部堆积体产生整体变形,其运动过程可分为崩滑→铲刮→滑移→堆积4个阶段.   相似文献   

9.
四川茂县新磨村高位滑坡铲刮作用分析   总被引:1,自引:1,他引:0       下载免费PDF全文
2017年6月24日,四川省茂县叠溪镇新磨村发生高位顺层山体滑坡,滑动高差达1 160 m,滑动平距约2 200 m。该滑坡的滑动方量巨大,与其滑动过程中产生的铲刮效应有关。为分析其铲刮效应,文章通过现场调查、遥感影像解译和无人机航拍图像,确定该滑坡的滑动全过程为:多次历史地震造成滑坡源区岩体结构破碎,降雨沿顶部裂隙入渗导致水压力增大及石英砂岩中的薄层板岩软化,在长期疲劳效应下斜坡上部岩体最终发生滑动;上部滑体在运移过程中,对斜坡中部浅表风化层、部分基岩及下部老滑坡堆积体进行铲刮并重新堆积。采用Rockfall软件模拟源区滑体的运动路径、速度与能量,结果表明:在碎屑流区和老滑坡堆积区都存在明显的集中铲刮作用,整个滑坡的高危险区也主要位于该区域,所以危险性分区可代表不同滑坡区域的铲刮程度。计算得两个区域的铲刮方量分别为4.9×106,4.38×106 m3,滑坡总方量为13.35×106 m3。该模拟和计算方法迅速有效,可为以后类似滑坡的应急、救灾和铲刮方量计算提供参考。  相似文献   

10.
基于SBAS- InSAR技术的西藏雄巴古滑坡变形特征   总被引:2,自引:0,他引:2  
大型古滑坡及其强变形和复活灾害日益频发,已造成重大灾害事件和严重损失.古滑坡的发育、变形影响因素多、机理复杂和识别难度大,本文采用SBAS-InSAR技术,结合遥感解译,获取了金沙江西岸雄巴村古滑坡2017年10月至2020年6月间的地表变形特征.研究表明,雄巴古滑坡方量巨大,可达2.6×108~6×108 m3,根据InSAR形变监测结果,滑坡前缘发育H1和H2等2个大型强变形区,变形级别分为4级:极强变形区(-132.1 mm/a≤VLOS<-58.5 mm/a)、强变形区(-58.5 mm/a≤VLOS<-20.3 mm/a)、中等变形区(-20.3 mm/a≤VLOS<l.8 mm/a)和弱变形区(1.8 mm/a≤VLOS<55.4 mm/a);其中H1变形区,最大累计变形量达203.8 mm,H2变形区变形量达302.1 mm.受金沙江河流侵蚀,特别是上游75 km的2018年10月和11月白格2次滑坡-堵江-溃坝-泥石流/洪水灾害链对雄巴古滑坡坡脚的侵蚀,加剧了雄巴古滑坡的变形,其中H1变形区的蠕滑速率是白格滑坡灾害链发生前的14~16倍,灾害链引起H2区发生变形,雄巴古滑坡整体呈现牵引式复活状态.基于SBAS-InSAR的形变监测结果得到了野外的验证,目前H1变形区前缘出现局部垮塌,滑体中横向和竖向裂缝发育,局部呈现拉张状态.雄巴古滑坡目前呈现持续变形中,部分地段为加速变形,雄巴古滑坡发生大规模复活将导致堰塞金沙江-溃坝-泥石流灾害链,应加强雄巴古滑坡的空—天—地一体化监测预警,为该区正在规划建设的重大工程和流域性地质安全风险提供技术支撑和科学依据.  相似文献   

11.
文章以绞东滑坡为例,利用多期光学影像和Sentinel-1A降轨数据对绞东滑坡的崩滑时间和历史活动性进行了分析,根据分析结果将绞东滑坡斜坡区划分为三个区域,其中两个已滑滑区(A区、C区)和一个潜在滑区(B区)。在此基础上,通过滑坡碎屑流和岩体势能之间的计算方程反演了已滑滑坡的体积规模和滑体平均厚度,并基于已滑滑坡对潜在滑区可能造成的灾情进行了预测,认为潜在滑区在全部滑坡的情况下存在堵江风险。文中研究认为,在遥感手段识别滑坡活动性的基础上,利用遥感影像、DEM等数据,通过计算滑坡碎屑流和岩体势能之间的关系,可进行实测数据难以获取区域的滑坡规模与滑体平均厚度估算,进而进行险情评估,为滑坡防治提供指导。  相似文献   

12.
On August 27, 2014, a large-scale landslide occurred in Fuquan, Guizhou, China. This high-speed landslide caused considerable destruction; 23 people were killed, 22 were injured, and 77 houses were damaged. Field investigations, deformation monitoring, and numerical analyses have been performed to examine the characteristics and formation processes of this landslide. In the Xiaoba area, the slope showed a two-layered structure with a hard upper layer and a soft lower layer. Dolomite of the Dengying Formation in the slope front formed a locked segment controlling slope stability. Based on deformation and failure characteristics, the landslide is divided into sliding source area A and accumulation area B. The landslide is also divided into the following stages: bedding slip, tension cracking at the slope scarp, and the appearance of the locked section at the slope toe. Numerical calculations show that excavation led to maximum shear strain concentration along the interface of siltstone and slate in the middle of the slope, which became a potential sliding surface. Stress concentration and distribution of the plastic zone of the locked segment of the Dengying Formation dolomite occurred in the slope toe. Continuous rainfall caused the groundwater level to rise in the Xiaoba slope. The unfavorable geological structure was a determinant factor, and the combined effects of excavation and continuous rainfall were triggering factors that induced the landslide. The geomechanical mode for the Xiaoba landslide is sliding tension–shear failure.  相似文献   

13.
江顶崖古滑坡位于甘肃舟曲白龙江左岸,区内地形地貌和地质构造复杂,多高山峡谷且河流纵坡降大,晚第四纪以来强烈活动的坪定—化马断裂带从区内通过,造成地层岩性极为破碎,古滑坡发育,且复活特征明显。在遥感解译和现场调查的基础上,对江顶崖古滑坡的发育特征和复活机理进行分析,认为江顶崖古滑坡堆积体方量为41×106~49×106m3,为在地质历史上形成的巨型古滑坡,位于坪定—化马断裂带及其次级断裂形成的断裂带内。根据滑坡不同位置和坡体结构特征,将江顶崖古滑坡共划分为古滑坡崩塌区、滑坡岩体变形区、古滑坡堆积区等3个大区,以及4个古滑坡复活区等7个区域,坡体内断错陡坎和拉裂缝极为发育。江顶崖古滑坡的中部复活区是主要变形和破坏区,1991年和2018年的复活区均位于该区域内,2018年复活滑坡体体积为480×104~550×104m3,为缓慢滑动的牵引式滑坡。江顶崖古滑坡复活机理复杂,在断裂活动和地震作用下形成的破碎岩土体和斜坡结构特征为滑坡复活提供了内因,强降雨作用增加了坡体自重并弱化了岩土体的力学强度,在暴雨期形成的强烈河流侵蚀作用进一步切割坡脚,从而诱发滑坡的复活;因此,江顶崖古滑坡是在内外动力耦合作用下形成的典型古滑坡复活案例。目前江顶崖古滑坡区域内的4个滑坡复活区仍处于蠕滑状态,在强降雨和河流侵蚀等作用下极可能再次发生复活,并造成堵江和毁坏国道等灾害事件。  相似文献   

14.
阳鹿(阳朔—鹿寨)高速公路K52新滑坡为古滑坡堆积体中局部复活的滑坡,处于急剧变形状态,需进行抢险性处治。复工后对该滑坡进行了详细的地质勘察及变形监测,借助FLAC3D软件对其成因、变形过程及变形机理进行了研究,得到了以下结论:(1)古滑坡堆积体形成于顺层岩质滑坡,堆积体内部发育软-可塑状软弱夹层风化页岩,为新滑坡的主要滑带土;(2)导致新滑坡变形的主要内因为不良地质、微地貌、特殊的岩土结构,主要外因为在中后部堆载、填土改变地表水径流路径、向滑坡排放生活用水及降雨;(3)新滑坡具有三层滑面,失稳前底部滑面为主滑面,失稳阶段中部滑面为主滑面,属前段推移后段牵引型复合式滑坡,具多级、逐级及渐进滑动特点;(4)新滑坡变形进程为:后缘拉张变形-中部剪切蠕变-滑体A、B推移剪出失稳-滑体C前缘临空牵引失稳;(5)新滑坡处治重点应防止顶部、中部及底部三个滑动面继续变形,也应防止古滑面及古滑坡堆积体内部其余风化页岩夹层产生次级滑动。  相似文献   

15.
长江三峡库区位于我国地形第二、三级阶梯过渡地带,地质环境复杂,斜倾顺层基岩滑坡较为发育。本文以重庆石柱龙井滑坡为例,详细分析了大型斜倾顺层基岩滑坡的变形特征、成因机理和破坏模式、并采用极限平衡法计算了滑坡在四种工况条件下的稳定性。结果表明:(1)龙井滑坡位于扬子准地台石柱向斜北西翼,体积约1.42×106 m3,主滑方向162°,前缘发育两个次级滑坡;(2)受地形地貌、地层构造、地下水和降雨等因素影响,滑坡目前处于蠕滑变形阶段,变形方式主要为拉张裂缝、剪切裂缝和局部鼓胀变形;(3)滑坡同时处于暴雨和前缘次级滑坡滑动条件下,稳定性为1.03,处于欠稳定状态,滑坡易沿软弱夹层发生整体滑动破坏。  相似文献   

16.
闫怡秋  郭长宝  钟宁  李雪  李彩虹 《地球科学》2022,47(12):4681-4697
位于四川省丹巴县聂呷乡甲居村的甲居古滑坡主要由甲居滑坡(H01)、聂呷坪滑坡(H02)、小巴旺村滑坡(H03)、聂拉村滑坡(H04)和山顶滑坡(H05)等5个次级滑体组成.受区域构造、强降雨、河流侵蚀、地层岩性等因素影响,甲居古滑坡次级滑体持续发生蠕滑变形,对位于滑体上的村庄、道路和前缘大金河等具有较大危害,2020年遭受50年一遇的强降雨后,古滑坡变形速率有进一步增大的趋势.采用SBAS-InSAR技术,结合遥感解译和现场调查,获取了甲居古滑坡2018年6月至2021年8月的地表变形特征,通过二维形变速率转换获取了甲居古滑坡沿斜坡向(slope)和垂直向(vertical)的形变速率.研究认为,甲居古滑坡沿雷达视线方向(VLOS)形变速率最大达-179 mm/a,沿斜坡方向的形变速率(Vs)最大为-211 mm/a,沿垂直方向的变形速率(Vv)最大为-67 mm/a.甲居滑坡的北侧区域、聂拉村滑坡的南侧区域和山顶滑坡后缘变形较大,总体上位于强变形-极强变形区.甲居古滑坡的变形机制具有一定差异,其中甲居滑坡以牵引式变形为主,聂拉村滑坡以推挤式变形为主.由于古滑坡地质构造复杂、新构造活动强烈,在强降雨和河流侵蚀作用下极易导致滑坡蠕滑速率加快并进一步失稳,形成堵江溃坝等灾害.建议加强次级滑体的地表变形监测,为流域性地质安全风险防灾减灾提供技术支撑和科学依据.   相似文献   

17.
中等倾角岩层顺向坡,受坡体结构和岩体物理力学性质控制,多存在变形、崩塌、滑坡等工程地质问题,常常会诱发大规模的地质灾害。该类斜坡潜在滑动面不直接出露地表,一般具有变形机制复杂、隐蔽性强和危害大的特点,是滑坡领域关注与研究的重点。拖担水库大坝左岸为一古滑坡,在水库扩建开挖过程中,诱发古滑坡体复活。在分析古滑坡工程地质条件的基础上,结合地质勘察和变形监测结果,研究了其变形特征及形成机制。研究结果表明:①左岸古滑坡具有岩层倾角“上陡下缓”、滑体底部存在反倾坡内的剪切破碎带、滑床岩体产生弧状弯曲的特点;②古滑坡体为一基岩顺层滑坡,滑动模式为“滑移(弯曲)—剪断”型,其变形破坏过程包括三个阶段:弯曲隆起阶段、滑移剪出阶段和扰动变形阶段;③该类斜坡变形破坏后,坡体易沿“上陡下缓”的椅型软弱层面发生二次滑动,滑坡控制关键是对下部变形区的保护。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号