首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
在多光谱遥感浅海水深反演过程中,考虑到水体和底质影响,水深值和海水表面辐射亮度之间的线性关系不成立。本文以甘泉岛南部0~25m范围的沙质区域为研究区域,利用GeoEye-1多光谱遥感影像和多波束实测水深数据构建XGBoost非线性水深反演模型,研究了XGBoost算法用于水深反演的性能。以决定系数(R~2),均方误差(MSE)和平均绝对误差(MAE)作为评价指标,并与3种传统线性回归模型进行了对比分析。结果表明, XGBoost非线性水深反演模型的R~2、MSE和MAE分别为0.991、0.33m和0.44m,拟合程度最好,精度优于线性回归模型。为进一步探究各模型在不同水深的反演精度,将水深范围分成3段(0~8 m, 8~15 m, 15~25 m)分别进行精度验证和误差分析。结果表明, XGBoost模型在各分段的精度均优于线性回归模型, MSE依次为0.56 m, 0.14 m和0.43 m。可见,在单一底质区域下XGBoost模型的水深反演精度更高,且反演效果更稳定。  相似文献   

2.
卫星水深反演是水深测量的一种重要手段,其中Stumpf比值算法和Lyzenga多项式算法应用广泛并诞生了大量改进算法,但这些算法没有顾及不同光谱的测深极限与适用范围,为此本文提出一种基于光谱分层的水深反演方法。首先,根据红、绿、蓝光谱对水体的穿透能力差异,提出一种基于影像本身的无参数光谱分层策略,提取红光层、绿光层、蓝光层;然后,根据不同光谱层的波段测深性能,分光谱层构建水深反演优化模型,获取浅海水深反演结果。以我国南沙海域长线礁和美属维尔京群岛巴克岛为实验区,本文方法对经典Stumpf比值算法和Lyzenga多项式算法进行改进后,水深均方根误差、平均绝对误差、平均相对误差分别降低了0.41~0.89 m、0.35~0.65 m、4%~19%,尤其在红光层,即水深较浅区域,平均相对误差降低了58%~149%,精度提升明显。因此,改进算法在提高卫星水深反演效果方面具有可行性和有效性。  相似文献   

3.
为获取高精度的水深信息以满足海洋研究各领域的需要,提出一种CatBoost和XGBoost模型组合的水深反演模型。选取Sentinel-2A卫星遥感数据,以瓦胡岛为研究区域,引入CatBoost和XGBoost模型,对二者进行线性组合,构建CatBoost-XGBoost组合模型。实验结果表明:组合模型的决定系数、均方根误差、平均绝对误差以及平均相对误差分别为95.32%、1.29 m、0.86 m、20.51%,与单一模型相比,组合模型的水深反演精度有一定提高。  相似文献   

4.
水深是浅海重要的地形要素,利用遥感手段探测水深具有经济、高效等优势。利用"高分二号"多光谱遥感数据,采用不同波段组合的对数线性模型、Stumpf对数转换比值模型和改进的对数转换比值模型,以香港平洲岛为研究区域进行水深反演,并开展精度评价。结果表明:对数线性模型、Stumpf对数转换比值模型和改进的对数转换比值模型中,B1,B2,B3和B4(蓝、绿、红和近红外)4波段组合的对数线性模型水深反演精度最高,其检查点平均绝对误差MAE为1.63 m,平均相对误差MRE为12.67%,决定系数R2达0.80;0~5 m,5~10 m,10~15 m,15~20 m分水深段分析发现,3种模型在10~15 m水深段的水深反演效果均较好,最小的平均绝对误差MAE和平均相对误差MRE分别为1.09 m和8.99%,10 m以浅和15 m以深的反演误差较10~15 m的较大,显示上述模型更适合于中等浅水区域的应用。  相似文献   

5.
在立体影像双介质测量水深和多光谱影像反演水深的研究基础上,提出将两者集成的途径。在重叠正射影像的有纹理水域采用折射法获取水深值,将折射法获取的水深值作为多光谱反演模型的参考值,获取反演模型参数,将反演模型应用到无纹理水域,集成折射法和反演法的水深值,从而获取浅水区域的水下地形。以某浅海地区航空影像生成的左右正射影像为实验数据,采用折射法与反演法集成途径获取水深值,并与真值(激光水深点)进行回归分析,回归的决定系数(R~2)和均方根误差(RMSE)分别为0.9 m和0.45 m,验证了该集成途径的有效性和可行性。  相似文献   

6.
澙湖是中国北方重要的滨海生态系统之一,水深较浅、透明度较低、底质类型复杂、人类干扰频繁等特点导致澙湖水深资料长期缺乏或存在较大误差,极大地制约了澙湖生态系统的研究和保护。本研究在现场实测水深的基础上,使用IKONOS高分辨率卫星影像,将山东荣成月湖水域划分为浅水区、植被区和深水区三类分别进行水深反演。研究表明红光波段(Band3)对水深的敏感性最高,分区建立线性回归模型反演水深的精度高于不分区的精度,多波段组合模型的反演精度最高,植被对水深反演的精度影响较大。反演结果表明,月湖水深最深处达271.23cm,水深反演的平均相对误差为13.16%。  相似文献   

7.
对于水深光学遥感反演研究,虽然已经建立了大量的模型方法,然而对于不同水深段,同一模型的反演精度各异,且采用单一模型进行水深反演得到的整体反演精度未必最佳。为了提高水深光学遥感反演的整体精度,本文提出一种分段自适应水深反演融合模型,模型在误差估计的基础上,结合了对数线性模型、对数转换比值模型、改进的对数转换比值模型与多调节因子模型的优势。利用模型在西沙群岛东岛开展了水深遥感反演实验,从整体反演精度、不同水深段反演精度及逐米水深精度等角度进行分析,结果表明,分段自适应融合模型的整体精度最高,平均绝对误差为1.09 m,平均相对误差达到16.06%;分水深段来看,分段自适应融合模型在多数不同水深段内的反演效果均最好;从逐米精度来看,分段自适应融合模型在大部分逐米水深段的反演能力均优于其他模型。  相似文献   

8.
高分一号卫星作为我国首颗对地观测高分辨率卫星,充分挖掘其在海洋领域的应用潜力具有重要意义。以西沙群岛晋卿岛周边浅海水域为研究区域,应用国产高分一号卫星多光谱数据,在开展图像几何校正、大气校正和耀斑校正预处理的基础上,应用常用的双波段线性和对数比值模型开展晋卿岛周边浅海水深反演,并利用实测水深数据开展精度评价,对比分析不同模型反演结果,探讨影响岛礁浅海水深反演精度的可能因素。研究表明,双波段线性模型的反演精度要明显优于对数比值模型,更适合应用于晋卿岛周边浅海水深反演,其20m以浅水深反演均方根误差为1.8m,在5m以浅区域的均方根误差为1.14m,达到了目前浅海水深卫星遥感反演的精度水平。  相似文献   

9.
基于半经验遥感模型,开展广东省雷州湾SPOT-5影像不同水深范围的遥感反演及误差分析,给出不同模型对应的最佳水深范围和不同水深范围的最佳反演模型,结果如下:红光单波段模型、红光-绿光双波段模型、绿光-红光-近红外三波段模型均在2~5m水深范围内反演误差最小,分别为16.7%,13.2%和17.1%。0~2m水深范围内,红光-近红外双波段模型反演误差最小,为34.3%;2~5m水深范围内,红光-绿光双波段模型反演误差最小,为13.2%;5~10m水深范围内,红光-近红外双波段模型反演误差最小,为19.3%;10~20m水深范围内,三波段模型反演误差最小,为31.5%。  相似文献   

10.
利用L andsat-7 ETM 遥感图像反射率和实测水深值之间的相关性,建立了单波段模型、双波段模型、比值模型和多波段模型等4种线性回归模型,以及动量BP人工神经网络水深反演模型,对长江口南港航道水深进行了反演,对比分析了不同方法在长江口水深反演计算中的优劣性,试验表明,神经网络反演模型标准误差最小,精度最高。  相似文献   

11.
采用常规最小二乘法(LS)和总体最小二乘法(TLS)对浮游植物色素吸收系数与叶绿素a浓度之间的关系进行了研究。利用2003-2012年6个航次243组实测数据,建立了LS和TLS模型,应用模型估算典型波段的色素吸收系数值,并对两种模型进行了验证。采用平均绝对百分误差和均方根误差两种方法进行模型效果评估,结果显示,两种评估方法均能很好地说明,在400~700 nm光谱范围内,TLS拟合结果优于LS拟合结果。总体最小二乘法在综合考虑了参数误差和测量误差的情况下,拟合结果精度更高,更符合实际情况,估算结果的准确性要优于常规最小二乘法。  相似文献   

12.
海面盐度(sea surface salinity,SSS)是研究海洋变化及其气候效应重要的物理量,对海洋生态环境、海洋可持续发展至关重要.为了提高海面盐度反演精度,本文通过对SMAP卫星L波段微波辐射计测量的亮温数据进行海面盐度反演研究,考虑风、浪等影响海面粗糙度的环境因子对Klein-Shift模型(简称K-S模型...  相似文献   

13.
针对传统海表盐度的物理机制反演模型拟合过程复杂且反演精度不高等问题,借助大范围、全天时、L波段探测的SMAP卫星微波海洋遥感产品,以北太平洋(135°~165°E,15°~45°N)范围为研究海域,利用深层神经网络(Deep Neural Network,DNN)和支持向量机(Support Vector Machin...  相似文献   

14.
赵健  刘仁强 《海洋科学》2023,47(8):7-16
海平面变化包含多种不同时间尺度信息,传统的预测方法仅对海平面变化趋势项、周期项进行拟合,难以利用海平面变化的不同时间尺度信号,使得预测精度不高。本文基于深度学习的预测模型,提出一种融合小波变换(wavelet transform,WT)与LSTM (long short-term memory,LSTM)神经网络的海平面异常组合预测模型。首先利用小波分解得到反映海平面变化总体趋势的低频分量和刻画主要细节信息的高频分量;然后通过LSTM神经网络对代表不同时间尺度的各个分量预测和重构,实现海平面变化的非线性预测。基于该模型的海平面变化预测的均方根误差、平均绝对误差和相关系数分别为12.76 mm、9.94 mm和0.937,预测精度均优于LSTM和EEMD-LSTM预测模型,WT-LSTM组合模型对区域海平面变化预测具有较好的应用价值。  相似文献   

15.
水边线的精确提取对于沿海地区的经济开发和海域的使用管理具有重要意义。以雷州半岛东北部为研究区域,利用2017年资源三号(ZY-3)卫星数据为数据源,基于不同海岸地貌特征为划分依据,运用阈值分割法、神经元网络分类法和面向对象法对多光谱数据的人工海岸、砂质海岸、淤泥质海岸和红树林海岸进行水边线提取。通过目视解译提取融合图像的海岸线为基线,将提取的水边线与基线进行定性、定量分析。研究结果表明,对于人工岸线,神经元网络分类法最优,均方根误差为6.4m;对于砂质岸线,阈值分割法最优,均方根误差为5.4m;对于淤泥质及红树林岸线,面向对象法最优,均方根误差分别为23.3m和15.2m。该研究对于不同岸线的提取具有重要的借鉴和指导意义。  相似文献   

16.
悬浮泥沙作为重要水质参数,其分布和动态变化对河口及近岸的生态、环境、物质循环等都具有深远的影响。我国静止轨道高分四号(GF-4)卫星数据具有高时间和高空间分辨率的观测优势,在水色遥感上具有重大应用潜力。为探究GF-4卫星对悬浮泥沙浓度的监测能力,本文以杭州湾为研究区,构建反演模型,利用静止海洋水色成像仪进行交叉验证。结果表明,以GF-4卫星第5和第4波段遥感反射率的比值作为遥感因子建立的反演模型精度较高,决定系数为0.92,均方根误差为223.2 mg/L,平均相对误差为17.2%。交叉验证结果显示,GF-4卫星作为一种新的遥感数据源,在低浓度区与静止海洋水色成像仪反演悬浮泥沙浓度分布相似,但在高浓度区的差异随浓度增高而增大,总体可满足中国大部分海区的监测需求。  相似文献   

17.
A fuzzy inference system (FIS) and a hybrid adaptive network-based fuzzy inference system (ANFIS), which combines a fuzzy inference system and a neural network, are used to predict and model longshore sediment transport (LST). The measurement data (field and experimental data) obtained from Kamphuis [1] and Smith et al. [2] were used to develop the model. The FIS and ANFIS models employ five inputs (breaking wave height, breaking wave angle, slope at the breaking point, peak wave period and median grain size) and one output (longshore sediment transport rate). The criteria used to measure the performances of the models include the bias, the root mean square error, the scatter index and the coefficients of determination and correlation. The results indicate that the ANFIS model is superior to the FIS model for predicting LST rates. To verify the ANFIS model, the model was applied to the Karaburun coastal region, which is located along the southwestern coast of the Black Sea. The LST rates obtained from the ANFIS model were compared with the field measurements, the CERC [3] formula, the Kamphuis [1] formula and the numerical model (LITPACK). The percentages of error between the measured rates and the calculated LST rates based on the ANFIS method, the CERC formula (Ksig = 0.39), the calibrated CERC formula (Ksig = 0.08), the Kamphuis [1] formula and the numerical model (LITPACK) are 6.5%, 413.9%, 6.9%, 15.3% and 18.1%, respectively. The comparison of the results suggests that the ANFIS model is superior to the FIS model for predicting LST rates and performs significantly better than the tested empirical formulas and the numerical model.  相似文献   

18.
卫星影像是监测海面漂浮绿藻的重要数据源, 但是混合像元的存在使得绿藻提取存在一定的误差。想要实现近海区域底栖绿藻的精细监测, 需要解决绿藻亚像素覆盖度的问题。本文以厘米级分辨率无人机数据的绿藻提取结果为基准, 通过分析Landsat卫星影像绿藻光谱, 建立绿藻亚像素覆盖度与多种植被指数和多个特征波段反射率的反演模型。结果表明, 蓝、绿、红波段反射率与绿藻亚像素覆盖度呈现较好的线性关系, 随着绿藻亚像素覆盖度递增, 蓝、绿、红波段反射率的值均递减。将蓝、绿、红波段的三种绿藻亚像素覆盖模型进行验证, 发现绿波段反射率所建立的反演模型具有更高的准确性, 决定系数、均方根误差、平均相对误差分别为0.92%、0.07%、10.85%。本文所建立的模型可以估算大型绿藻亚像素覆盖度, 实现Landsat卫星影像对大型绿藻的精细监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号