首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
新疆伊犁地区是我国西北黄土滑坡广泛分布的地区之一,伊犁地区地处欧亚大陆腹地,独特的地形地貌条件和特殊的地理位置为黄土滑坡的形成创造了条件。黄土滑坡不仅有其形成的内在物质条件、力学条件,还有许多外在的影响因素,包括降水与融雪、地震、植被、人类工程活动,对伊犁地区黄土滑坡成因及影响因素的分析,对伊犁地区黄土滑坡的研究具有一定的价值。  相似文献   

2.
不同的覆盖条件下,季节冻土的特征会存在差异。为了分析积雪与森林/草地覆盖条件下季节冻土的特征,在新疆天山西部巩乃斯河上游的中国科学院天山积雪雪崩研究站的实验场地监测了森林-积雪,草地-积雪,以及草地覆盖条件下季节冻土的冻结深度,并对有无积雪覆盖条件下季节冻土发育过程中的土壤温度和土壤含水量进行了跟踪测量。结果表明:森林-积雪覆盖条件下季节冻土的冻结深度最浅,草地-积雪覆盖条件下次之,草地覆盖条件下最深。积雪的存在可以改变季节冻土的冻结深度,还会影响土壤温度和土壤含水量变化。在季节冻土的发育阶段,积雪的隔热作用使得有积雪覆盖条件下土壤温度和土壤含水量较高;在积雪消融阶段,由于积雪融水的补给,土壤含水量也相应地增加,积雪消失后由于蒸发的存在导致土壤含水量减少。  相似文献   

3.
青藏高原冬春积雪和季节冻土年际变化差异的成因分析   总被引:9,自引:13,他引:9  
高荣  韦志刚  董文杰 《冰川冻土》2004,26(2):153-159
利用青藏高原上72个常规气象观测站的逐日积雪厚度、冻结深度、气温、降水和地表温度资料,分析了高原积雪和季节冻土年际变化差异的原因.结果表明:气温和地表温度对高原积雪和季节冻土都有重要的影响,而降水对积雪的影响很重要,但是对季节冻土的影响则比较小.高原积雪对季节冻土有较大的影响,在积雪达到一定厚度以后,积雪的保温作用会影响冻结深度的变化,积雪越厚,保温作用越强;积雪越浅,保温作用越弱,当积雪小于某一厚度时其主要起降温作用.积雪的保温作用可能是积雪与季节冻土年际变化差异的原因之一.  相似文献   

4.
为了掌握季节冻土冻结深度的变化对气候的响应,利用1961-2015年吉林省46个气象站的逐日平均气温、地表温度、积雪深度、冻土冻结深度等数据,采用线性倾向估计、突变分析等方法,研究了吉林省季节冻土冻结深度的时空演变规律及其与气温、积雪的关系。结果表明:吉林省季节冻土最大冻结深度呈由西向东逐渐减小的空间分布特征,绝大多数站最大冻结深度呈减小趋势。基本上在10月开始冻结,次年3月达到最深,6月完全融化。西部冻土冻结深度变幅较大,其次是中部,东部最小。1961-2015年季节冻土最大冻结深度以-5.8 cm·(10a)-1的速率显著减小(P<0.01)。最大冻结深度基本上呈逐年代减小的趋势,从20世纪90年代开始,最大冻结深度明显减小。最大冻结深度在1987年发生了突变,突变后平均最大冻结深度比突变前平均最大冻结深度减小了22.2 cm。通过分析气温和积雪深度对冻结深度的影响,认为冻土冻结深度对气温变化较为敏感,绝大多数站最大冻结深度与平均气温呈负相关关系。在年际变化上,气温的上升是最大冻结深度减小的主要原因。在季节冻土稳定冻结期,积雪深度超过10 cm,保温作用逐渐变强;当积雪深度达到20 cm时,保温作用显著,冻土冻结深度变浅。  相似文献   

5.
季节冻土区埋地管道水温的变化规律及其影响因素分析   总被引:2,自引:0,他引:2  
陈继  李昆  盛煜  冯子亮 《冰川冻土》2014,36(4):836-844
埋地管道是减少寒冷地区冬季冻害的常用铺设方式,深入认识埋地管道的水温变化规律可以为减小管道埋设深度、降低管道冻害提供理论依据,对当前季节冻土区农牧民集中式供水工程的推进具有指导意义. 采用仿三维数值方法建立了管道水温的计算模型,讨论了含水量、地表温度、管道埋深等6个主要因素对埋地管道最不利水温的影响. 分析结果表明,无论上述因素如何变化,管道最不利水温均随输送距离的增加而下降. 首先,随着含水量的增加、地表温度的升高以及管道埋深的加深,管道的降温速率不断减小并具有先快后慢的特点;其次,随着管径的减小、流速的降低,管道降温速率增大,且降温速率和流速之间具有近似的倒数关系. 另外,随着入口温度的升高,管道降温速率将呈指数形式不断增加.  相似文献   

6.
新疆雪密度时空分布及其影响特征研究   总被引:10,自引:1,他引:9  
对29个有雪密度观测的气象站40 a气象资料进行聚类和回归分析.结果表明:降水、雪深、大风、吹雪等因子与雪密度有密切正相关关系,由此建立雪密度与气候因子关系模型.另选无雪密度观测的50个站40 a气象资料,用关系模型计算出各站雪密度,从而使有雪密度值的站点增加到79个,为深入细致研究新疆雪密度时空分布打下了基础.研究表明,新疆雪密度有明显稳定期和不稳定期之分,稳定期雪密度是时间的函数.采用Map Gis65,结合卫星遥感资料,研制了新疆雪密度(稳定期)空间分布图.新疆雪密度的分布呈现从盆地及其周边到山地及其周边最后到海拔3 800-4 000 m以上高山带,随高度的升高雪密度依次升高.依据雪密度分布图和时间函数计算得出,稳定期新疆雪密度最大平均值为0.191 g·cm-3.  相似文献   

7.
季节冻土在高寒山区广泛分布,其冻融过程会对水文水资源和生态环境产生深刻影响。研究气候变化背景下高寒山区季节冻土冻融特征参数变化及影响机理,可为高寒山区水资源管理和生态保护提供科学依据。本文选择天山南坡作为研究区,基于13个气象站点1958年以来季节冻土冻融参数(最大冻深、冻结期、始冻日、解冻日)、气温、地表温度、降雨和积雪等数据,使用空间分析和多元线性回归统计等方法对冻融参数的时空变化特征进行分析,量化不同气候因素对季节冻土冻融变化的影响权重。结果表明,季节冻土最大冻深在(48.5±11.4)~(96.8±8.5) cm之间,冻结天数在(102±10)~(141±14) d之间,多年平均始冻日在11月7日至19日之间,多年平均解冻日在3月1日至28日之间。1950年代至2010年代期间,始冻日逐渐推迟,解冻日逐渐提前,冻结天数缩短。空间分布上,最大冻深有“海拔高,最大冻深大”的规律;空间变化趋势上,最大冻深在研究区中部显著增加;冻结天数在研究区内大范围显著缩短。季节冻土冻融变化与气温相关性最强,温度(气温和地表温度)是季节冻土冻融变化的主导因子。定量评价发现,气温影响占比(24.1±3...  相似文献   

8.
最大冻结深度是季节冻土的重要指标,预测第三极地区未来最大冻结深度的变化,对于理解该区域的环境变化,指导生态保护、农牧业生产、工程建设等都具有重要意义。本研究利用基准时期(2000s)良好训练的支持向量回归模型,使用集合模拟策略,预测了2050s和2090s第三极地区在4种SSP情景下最大冻结深度的变化。结果表明,在可持续路径(SSP126)、中间路径(SSP245)、区域竞争路径(SSP370)和化石燃料为主发展路径(SSP585)情景下,不包括多年冻土退化为季节冻土的区域,相对于基准期,季节冻土的最大冻结深度到21世纪末将分别减小10.41 cm(11.69%)、24.00 cm(26.95%)、37.71 cm(42.34%)和47.71 cm(53.57%)。最大冻结深度的减小具有海拔依赖性,随着海拔的升高,最大冻结深度减小的速率变大,但是海拔超过5 000 m后,最大冻结深度减小速率逐渐减小,这与升温的海拔依赖性较为一致。最大冻结深度的变化也与生物群区有关,在4种SSP情景下,山地草地和灌木区的最大冻结深度减小速率最快,到21世纪末平均每十年分别减小1.80 cm、3.77 c...  相似文献   

9.
2000—2006年中国天山山区积雪时空分布特征研究   总被引:7,自引:2,他引:7  
以中国境内天山山区为研究区,基于2000—2006年的遥感积雪产品积雪分布时间序列趋势和空间分布特征,对积雪分布的年际变化趋势、积雪分布随海拔的变化趋势、积雪频率以及积雪雪线高度的年变化进行了分析.结果表明:1)积雪经历从秋季开始累积到春季开始消融的过程,1—2月积雪面积达到最大,7—8月面积最小.冬季积雪所占比例最大,超过50%;2)2000—2006年积雪面积年际变化略呈上升趋势,冬季上升趋势较明显,春、秋和夏季变化趋势不明显.冬季积雪面积在海拔4000m呈上升趋势,≥4000m呈下降趋势.在海拔2000m积雪的上升趋势达到最高点;3)从积雪频率来看,存在5个高值区,覆盖频率高达70%左右.从空间分布来看,天山中段积雪最多,东段次之,西段最少.在海拔3000m以下积雪次数较少,海拔3000m以上积雪次数显著增加.月积雪次数随海拔的变化表现为:海拔4000m以上各月的积雪次数都很多,12月至翌年2月在各高程带的积雪次数都较大;10—11月和3—4月积雪以海拔2500m为界,之下次数较少,以上次数增加显著;5—9月的积雪次数在海拔3000m以下非常少,在海拔3000m以上次数逐渐增加;4)以覆盖率≥40%相对应的海拔作为各个月份的雪线高度,天山山区平均雪线海拔在2875m.夏季雪线海拔在4000m以上;冬季雪线海拔在1500m.  相似文献   

10.
新疆北部积雪开始和结束时间的特征分析   总被引:1,自引:4,他引:1  
基于1961-2006年全疆32个测雪站的逐日积雪深度资料,分析了北疆区域积雪开始和结束时间的气候分布和时间变化特征.结果表明:积雪开始和结束时间存在明显的区域差异,这种差异主要是由地形高度变化引起的.积雪开始时间以12a和6a左右的周期振荡为主,积雪结束时间则以5a和8a左右的周期振荡为主.在不同海拔,积雪开始时间均呈偏晚趋势,积雪结束时间在较低海拔地区(≤1000m)呈偏晚趋势,而在较高海拔地区(1001~2000m)呈偏早趋势.积雪开始时间相对结束时间的趋势变化更为显著.积雪开始和结束时间和海拔关系密切,积雪开始时间随海拔升高而提前,积雪结束时间则随海拔升高而推迟.  相似文献   

11.
季节冻土场地上的地脉动特征   总被引:2,自引:0,他引:2  
以张掖市的一场地为研究对象,通过对不同季节地脉动的测量和分析,研究了场地的脉动频谱特性随季节的变化.对场地实测资料的分析发现,冬季随着上覆冻土层的出现,使得场地刚度发生变化,频谱形状也明显地改变,地脉动的卓越频率明显提高.  相似文献   

12.
季节冻土是气候变化的重要指示器,对区域气候变化具有重要的表征作用。本文利用青海省三江源地区20个位于季节冻土区的气象观测站点数据,通过计算最大冻结深度、冻结开始日期、完全融化日期和冻融期4个指标,分析了1961—2019年期间三江源地区季节冻土冻融状态时空变化特征;并通过计算空气冻结、融化指数及其变化趋势,结合地理因子(海拔、经度和纬度)和气候因子(气温、降水和雪深)评估了三江源地区季节冻土最大冻结深度与冻融状态的影响因素。结果表明:三江源地区季节冻土最大冻结深度为64.7~214.1 cm,冻结开始日期为9月初—10月底,完全融化日期为3月下旬—6月底,冻融期为144.7~288.4 d;1961—2019年期间三江源地区季节冻土最大冻结深度呈显著减小趋势[2.5 cm·(10a)-1],冻结开始日期显著推迟[2.9 d·(10a)-1],完全融化日期显著提前[2.6 d·(10a)-1],冻融期显著缩短[5.5 d·(10a)-1];三江源地区季节冻土冻融状态变化主要受温度变化的影响,表现为冷季...  相似文献   

13.
针对季节冻土区路基填土春融时常处于强度不稳定的状态, 根据季节冻土特性选取冻结温度、 融化温度、 围压、 含水率4种影响因素, 对张家口季节冻土区粉质黏土进行了模拟正融土的常规三轴试验, 采用灰色关联分析法对试验结果进行分析, 给出了4种影响因素对强度的敏感性排序。结果表明: 含水率、 融化温度、 冻结温度的敏感性超过60%, 需要重点考虑。9%含水率时, 土样强度较高, 发生脆性破坏, 随着含水率的增大, 向延性破坏转变; 融化温度主要影响土体剪切过程中融化速度和排水固结的速度, 温度越低, 土样强度越高; 冻结温度通过改变土颗粒和冰晶体的胶结程度来影响强度, 冻结温度越低, 胶结作用越强, 但低于-10 ℃后, 强度增长缓慢; 围压越大, 土体强度越大, 不同围压影响下, 应力-应变曲线的形状和走势却大致相同, 分析结果可为季节冻土区实际工程提供一定的参考。  相似文献   

14.
季节冻土对包气带水分迁移的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用智能化土壤墒情监测仪,对东北吉林集安季节冻土带进行地温和含水率观测,历时一个水文年。通过分析不同深度地温、含水率随时间的变化,研究地温场变化、降水入渗等因素对水分迁移的影响。寒季,气温急剧下降,地温随深度增加而增高,气态水在包气带上部的低温带凝结,当凝结速率大于渗透速率时,含水率不断增加,水分蓄积。季节冻土形成后,孔隙水以固态水的形式储存,是包气带上部水分主要的聚集期。暖季,地温随深度增加而降低,气态水向下运移凝结,即使降水入渗量很大也不会引起水分蓄积。因此,温度场控制着气态水凝结方向,是引起包气带内水分运移的重要影响因素之一。  相似文献   

15.
季节冻土区高速铁路路基冻胀监测系统及冻胀规律研究   总被引:1,自引:0,他引:1  
季节冻土区修建高速铁路的主要问题是路基冻胀. 依托我国东北、华北多个高速铁路路基冻胀监测工作实践,研究了一套冻胀监测系统的构建方法并成功应用于哈齐客专、大西客专、牡绥线等路基冻胀监测工作中. 综合监测成果,对高速铁路路基冻胀规律进行了分析,对冻胀原因进行了总结. 结果表明:冻胀监测系统应充分考虑严寒、低温、高速条件下,利用先进传感器及物联网技术来实现各子系统集成;季节冻土区铁路路基冻胀存在一定规律可循,季节冻土区铁路路基冻胀不可避免但是可控. 填料质量是防冻胀控制的根本,施工质量过程管控是基础保障.  相似文献   

16.
青藏高原土壤有机碳储量(soil organic carbon stocks, SOCS)对于区域生态环境演替具有重要作用, 但是其空间分布数据还比较缺乏, 特别是季节冻土区的数据较少。基于378个土壤剖面数据, 结合与土壤有机碳(soil organic carbon, SOC)相关的地形、 气候以及植被等环境因子, 使用地理加权回归(geographically weighted regression, GWR)模型模拟了青藏高原季节冻土区0 ~ 30 cm、 0 ~ 50 cm、 0 ~ 100 cm和0 ~ 200 cm深度的SOC总量和空间分布。结果表明: 青藏高原季节冻土区SOCS自东南向西北递减, 表层0 ~ 200 cm的SOC总量约15.37 Pg; 季节冻土区不同植被类型SOC从大到小依次为森林、 灌丛、 高寒草甸、 高寒草原和高寒荒漠; 各土壤类型中棕壤、 黑钙土和泥炭土的SOC最大, 而棕钙土、 棕漠土、 灰棕漠土、 风沙土、 石质土、 盐土、 冷钙土、 寒漠土以及冷漠土的SOC最小。研究结果给出了青藏高原季节冻土区SOC的总量、 空间分布及规律, 可为相关地球模式的发展提供基础数据。  相似文献   

17.
基于SNTHERM雪热力模型的东北地区季节冻土温度模拟   总被引:1,自引:0,他引:1  
梁爽  杨国东  李晓峰  赵凯  姜涛 《冰川冻土》2018,40(2):335-345
冬季土壤温度在土壤肥力、植被安全越冬、土壤微生物活动中扮演着重要角色。雪盖的反照与隔热作用对冬季土壤温度变化及冻融过程具有一定影响,深入探究积雪覆盖对土壤温度的影响机制有十分重要的意义。雪热力模型(Snow Thermal Model,SNTHERM)是用来模拟和预测积雪演化和冻土温度的一维质能平衡模型。基于该模型,结合积雪下冻土温度的观测试验,通过模型模拟结果与实测数据的统计特征参数分析,进行了积雪覆盖下冻融土壤温度变化过程模拟的有效性和精度评价。结果表明,在积雪覆盖条件下,SNTHERM模型能够有效地模拟雪盖下浅层(5 cm、10 cm、15 cm深度)冻土日平均温度的变化过程,模拟值与观测值具有很好的一致性。通过改进模型中土壤层水分迁移等因素,能够提高冻土温度的模拟精度,为研究积雪各参数演化过程与下垫面温度的相互作用奠定理论基础,有助于提高积雪参量空间遥感的反演精度。  相似文献   

18.
新疆伊犁地区典型黄土磁学特征及其环境意义初探   总被引:3,自引:3,他引:3       下载免费PDF全文
黄土地层记录的磁学参数受控因素复杂,全球不同地区黄土磁化率的主要受控因子存在差别。文章在伊犁地区选取两个地层磁化率与成壤作用分别存在较明显正相关和负相关的典型黄土剖面,进行了系统磁性地层学研究。结果表明伊犁地区黄土地层中磁性矿物浓度较大,磁学性质主要受呈现准单畴状态磁铁矿控制,黄土沉积物中磁性矿物主要为原生矿物,后期改造作用弱,地层的磁学特征受物源影响明显。地层的成壤强度与地层中磁性矿物浓度无明显相关关系,与磁性矿物中细粒磁性矿物的含量呈正相关关系。本研究结果暗示伊犁地区黄土沉积物的磁化率增强模式既区别于典型的西伯利亚黄土"风速说"模型,也不同于中国黄土高原"成壤说"模型; 当后期改造作用弱时,地层的磁学特征主要受物源影响; 随着地层成壤作用的增强,对原生磁性矿物的改造作用逐渐增强,次生磁性矿物含量逐渐增加,磁化率变化规律趋近于"成壤说"模型。  相似文献   

19.
欧亚大陆积雪分布及其类型划分   总被引:2,自引:0,他引:2  
张廷军  钟歆玥 《冰川冻土》2014,36(3):481-490
利用1966-2012年欧亚大陆1152个地面气象台站积雪深度资料,对欧亚大陆积雪深度、累计积雪天数和连续积雪天数的空间分布进行了分析,以连续积雪天数为标准对欧亚大陆季节性积雪类型进行了划分,并与应用累计积雪天数对积雪区类型的划分进行了比较研究. 结果表明:欧亚大陆积雪分布具有显著纬度地带性特征,积雪深度、累计积雪天数和连续积雪天数的大值分布区均位于俄罗斯平原的东北部、科拉半岛、西西伯利亚平原、中西伯利亚高原以及俄罗斯远东北部大部分区域. 与累计积雪天数划分方法相比,利用连续积雪天数对欧亚大陆季节性积雪分区,在前苏联地区积雪类型分区差异并不显著,但蒙古和中国的稳定积雪区明显缩减,青藏高原无稳定积雪区,中国大部分地区为非周期性不稳定积雪区. 两种积雪分区划分方法比较结果显示,连续积雪天数划分方法更能体现积雪累积的连续性和持久性,更符合对稳定积雪和不稳定积雪的划分标准.  相似文献   

20.
基于2002-2011年的MODIS积雪产品数据, 对新疆积雪的年际变化特征、年内变化特征及空间分布特征进行了分析.结果表明: 年内积雪从10月中旬开始建立, 于1月面积达到最大, 7月面积达到最小.其中, 冬季积雪面积所占比例最大, 夏季最小. 2002-2011年新疆积雪面积总体上呈减少趋势. 其中, 春季和冬季为减少趋势;夏季的积雪由于其基本上都是高海拔的永久性积雪, 故比较稳定, 变化趋势不明显;秋季为上升趋势.新疆积雪空间分布极不均匀, 北疆积雪分布明显多于南疆.山区为积雪覆盖频次的高值区, 盆地为积雪覆盖频次的低值区.永久性积雪在阿尔泰山脉分布较少, 主要分布在天山山脉和昆仑山脉.就永久性积雪面积而言, 分布在海拔5 000~6 000 m的面积最大, 其次是海拔4 000~5 000 m, 再次是海拔6 000~7 000 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号