首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
 Results are presented from 11 microgravity surveys on Mt. Etna between 1987 and 1993, a period including the major 1989 and 1991–1993 flank eruptions and subordinate 1990 activity. Measurements were made with LaCoste and Romberg D-62 and D-157 gravity meters along a network around the volcano between 1000 and 1900 m a.s.l. and, since 1992, a N–S summit profile. Gravity changes of as much as 200 μGal were observed at scales from the size of the summit region to that of the volcano. None was associated with significant changes in ground elevation. The data show an increase in gravity for 2 years before the 1989 eruption. The increase is attributed to the accumulation of magma (0.25–1.7×109 m3) in an elongate zone, oriented NNW–SSE, between 2.5 and 6 km below sea level. Part of this magma was injected into the volcanic pile to supply the 1989 and 1990 eruptions. It also probably fed the start of the 1991–1993 eruption, since this event was not preceded by significant gravity changes. A large gravity increase (up to 140 μGal) detected across the volcano between June and September 1992 is consistent with the arrival in the accumulation zone of 0.32–2.2×109 m3 of new magma, thus favoring continued flank effusion until 1993. A large gravity decrease (200 μGal) in the summit region marked the closing stages of the 1991–1993 event and is associated with magma drainage from the upper levels of Etna's central feeding system. Received: 15 July 1995 / Accepted: 27 October 1997  相似文献   

2.
Microgravity observations at Mt. Etna have been routinely performed as both discrete (since 1986) and continuous (since 1998) measurements. In addition to describing the methodology for acquiring and reducing gravity data from Mt. Etna, this paper provides a collection of case studies aimed at demonstrating the potential of microgravity to investigate the plumbing system of an active volcano and detect forerunners to paroxysmal volcanic events. For discrete gravity measurements, results from 1994–1996 and 2001 are reported. During the first period, the observed gravity changes are interpreted within the framework of the Strombolian activity which occurred from the summit craters. Gravity changes observed during the first nine months of 2001 are directly related to subsurface mass redistributions which preceded, accompanied and followed the July-August 2001 flank eruption of Mt. Etna. Two continuous gravity records are discussed: a 16-month (October 1998 to February 2000) sequence and a 48-hour (26–28 October, 2002) sequence, both from a station within a few kilometers of the volcano's summit. The 16-month record may be the longest continuous gravity sequence ever acquired at a station very close to the summit zone of an active volcano. By cross analyzing it with contemporaneous discrete observations along a summit profile of stations, both the geometry of a buried source and its time evolution can be investigated. The shorter continuous sequence encompasses the onset of an eruption from a location only 1.5 km from the gravity station. This gravity record is useful for establishing constraints on the characteristics of the intrusive mechanism leading to the eruption. In particular, the observed gravity anomaly indicates that the magma intrusion occurred “passively” within a fracture system opened by external forces.  相似文献   

3.
For 5 months before the 2001 Mt. Etna eruption, a progressive gravity decrease was measured along a profile of stations on the southern slope of the volcano. Between January and July 2001, the amplitude of the change reached 80 μGal, while the wavelength of the anomaly was of the order of 15 km. Elevation changes observed through GPS measurements during a period encompassing the 5-month gravity decrease, remained within 4–6 cm over the entire volcano and within 2–4 cm in the zone covered by the microgravity profile. We review both gravity and elevation changes by a model assuming the formation of new cracks, uniformly distributed in a rectangular prism. The inversion problem was formulated following a global optimization approach based on the use of Genetic Algorithms. Although it is possible to explain the observed gravity changes by means of the proposed analytical formulation, the results show that calculated elevation changes are significantly higher than those observed. Two alternative hypotheses are proposed to account for this apparent discrepancy: (1) that the assumptions behind the analytical formulation, used to invert the data, are fallacious at Etna, and thus, numerical models should be utilized; (2) that a second process, enabling a considerable mass decrease to occur without deformation, acted together with the formation of new cracks in the source volume.  相似文献   

4.
《Journal of Geodynamics》2007,43(2):320-329
A 2.5-month long gravity sequence, encompassing the starting period of the 2002–2003 Etna eruption and coming from a summit station only 1 km away from the new fractures, is presented and discussed. The sequence comprises four hours-long anomalies that have a great chance to reflect mass redistributions linked to the ensuing activity. In particular, the start of the eruptive activity on the northeastern flank was marked by a gravity decrease as strong as about 400 μGal, which reverted soon afterwards. This strong decrease/increase anomaly is interpreted as the opening, by tectonic forces, of a fracture system along the Northeastern Rift of Mt. Etna, followed by an intrusion of magma from the central conduit to the new fractures. They were used by the intruding magma as a path to the eruptive vents at lower elevations.Afterwards, on three occasions, in November and December 2002, 6–12 h-lasting gravity decreases, with amplitude ranging between 10 and 30 μGal, were observed simultaneously with increases in the amplitude of the volcanic tremor from four seismic stations. A correlation analysis, between the gravity signal and the overall spectral amplitude of each tremor sequence is performed over the 7 November–9 December period. A marked anti-correlation is found over each contemporaneous gravity decrease/tremor increase, while, over the rest of the investigated period, the correlation is negligible. Accordingly, a joint source is inferred to have acted during the occurrence of the three common anomalies. On the grounds of some volcanological observations spanning the period covered by our analysis, we propose the temporary accumulation of a gas cloud at some level within the plumbing system of the volcano to have acted as a joint source.The present work is a further evidence of the potential of continuous gravity observations as a tool to monitor and study active volcanoes and encourages their employment in spite of the difficulty of running spring gravimeters in a continuous fashion under the adverse conditions normally encountered on the summit zone of an active volcano.  相似文献   

5.
Calibration shift seriously influences gravity values measured using Scintrex CG‐3M gravimeters. We calibrated three Scintrex CG‐3M gravimeters three times (1999, 2003 and 2006) over eight years, using a calibration line with a gravity difference of 1.38 Gal. The scale factor correction coefficients (calibration factors) obtained here range from 0.9998–1.0005. The calibration factors vary with time by 89 ppm, ?102 ppm and ?126 ppm between the 1999–2003 surveys. The calibration shifts of two of the three gravimeters decreased to about 20 ppm or less in the second interval, the other remained about the same (142 ppm). The results indicate that they shifted at rates on the order of 10 ppm/year even several years after manufacturing. The large shift in calibration factors indicates that they must be corrected using calibrations done before and after the measurements to perform microgravity measurements when gravity differences between a reference gravity site and survey sites are on the order of a hundred milligals (mGal) or more. The results also indicate that the calibration factors change gradually with time, so their interpolation provides a good practical approximation for a specific survey time. We applied the time‐dependent calibration factors to microgravity monitoring at the Iwo‐tou caldera, Japan, where the gravity difference between the base site on the island and the reference site on Honshu (the mainland of Japan) is about 870 mGal mainly due to the 11° latitude difference. Gravity surveys were conducted every two years from 1998–2006. The correction of scale factors estimated from the repeated calibration surveys leads to satisfactory measurements, in which the average of the absolute differences between two Scintrex CG‐3M instruments in five surveys is reduced from 207μGal to 19μGal; for three of those surveys, it is less than 10 μGal. This result demonstrates the importance of repeated calibration surveys.  相似文献   

6.
Activity at Somma-Vesuvio volcanic area in southern Italy is monitored by seismic stations and periodic geodetic and gravity surveys. The seismic network, which consists at present of four vertical stations and one three-component station, recorded an increase in earthquake activity in 1978 and between November 1988 and March 1989. During the later activity, earthquakes were located in a cluster about 3 km beneath the summit of the volcano. Two tide gauges, two tiltmeters and a recording gravimeter are also operating at Somma-Vesuvio. Yearly levelling surveys are conducted along several closed routes that extend from as much as 6 km from the base of the volcano to the summit area. Survey results reveal no significant ground movement since 1959, except for a slight subsidence around the rim of the summit crater. Gravity changes have been larger than the expected 10 μGal uncertainty of the measurements. The lack of contemporary elevation changes implies that the observed gravity changes are the result of a slight change in density structure. The cone of Somma-Vesuvio has been very stable for the last few decades, showing no indications of a buildup to activity. The lack of surface movement should rule out a magma-supply rate to this volcano at the historic eruptive rate of 0.002 km3/yr.  相似文献   

7.
In 2007–2008, we installed on Mt. Etna two deep tilt stations using high resolution, self-leveling instruments. These installations are a result of accurate instrument tests, site selection, drilling and sensor positioning that has allowed detecting variations related to the principal diurnal and semidiurnal tides for first time on Mt. Etna using tilt data.  相似文献   

8.
Observations of the summit eruption of Klyuchevskoi volcano in the period from February 15, 2007 to July 9, 2007 are considered. This typical (for this volcano) summit eruption was explosive-effusive in character. The ejectamenta volume is estimated at 0.025 km3. Calculation of active phases of the volcano was carried out in accordance with V.A. Shirokov’s technique. The identified active phases agree well with the eruptive periods. The 2007 summit eruption corresponds to an active phase (May 2006 to May 2009) favorable for the volcano’s eruption. Geodetic observations carried out since 1979 along a radial profile have revealed uplifts and subsidences of the northeastern slope of the volcano. The maximum displacement of 23 cm was recorded in 2007 on the site closest to the volcano crater at a distance of 11 km from the summit crater center. In the course of two previous summit eruptions (2003–2004 and 2005) insignificant uplifts and subsidences of the slope were also noted, although the general ascent of the slope remained. This indicated possible repeated eruptions in the nearest future. Changes in the seismicity before, during and after the eruption are also discussed.  相似文献   

9.
During 1999, the volcanic activity at Mt. Etna was both explosive and effusive at the summit craters: Strombolian activity, lava fountains and lava flows affected different areas of the volcano, involving three of the four summit craters. Results from analysis of the 1999 volcanic tremor features are shown at two different time scales. First, the long-term time variation of the features of the volcanic tremor (including spectral and polarization parameters), during the entire year, was compared with the evolution of the eruptive activity. This approach demonstrated the good agreement between tremor data and observed eruptive activity; the activation of different tremor sources was suggested. Then, a more refined analysis of the volcanic tremor, recorded during 14 lava fountain eruptions, was performed. In particular, a shift of the dominant frequencies towards lower values was noted which corresponds with increasing explosive activity. Similar behaviour in the frequency content has already been observed in other explosive eruptions at Mt. Etna as well as on other volcanoes. This behaviour has been explained in terms of either an increase in the tremor source dimension or a decrease in the sound speed in the magma within the conduit. These results confirm that the volcanic tremor is a powerful tool for better understanding the physical processes controlling explosive eruptions at Mt. Etna volcano.  相似文献   

10.
Geological surveys, tephrostratigraphic study, and 40Ar/39Ar age determinations have allowed us to chronologically constrain the geological evolution of the lower NW flank of Etna volcano and to reconstruct the eruptive style of the Mt Barca flank eruption. This peripheral sector of the Mt Etna edifice, corresponding to the upper Simeto valley, was invaded by the Ellittico volcano lava flows between 41 and 29 ka ago when the Mt Barca eruption occurred. The vent of this flank eruption is located at about 15 km away from the summit craters, close to the town of Bronte. The Mt Barca eruption was characterized by a vigorous explosive activity that produced pyroclastic deposits dispersed eastward and minor effusive activity with the emission of a 1.1-km-long lava flow. Explosive activity was characterized by a phreatomagmatic phase followed by a magmatic one. The geological setting of this peripheral sector of the volcano favors the interaction between the rising magma and the shallow groundwater hosted in the volcanic pile resting on the impermeable sedimentary basement. This process produced phreatomagmatic activity in the first phase of the eruption, forming a pyroclastic fall deposit made of high-density, poorly vesicular scoria lapilli and lithic clasts. Conversely, during the second phase, a typical strombolian fall deposit formed. In terms of hazard assessment, the possible occurrence of this type of highly explosive flank eruption, at lower elevation in the densely inhabited areas, increases the volcanic risk in the Etnean region and widens the already known hazard scenario.  相似文献   

11.
On 22 September 2002, 1 month before the beginning of the flank eruption on the NE Rift, an M-3.7 earthquake struck the northeastern part of Mt. Etna, on the westernmost part of the Pernicana fault. In order to investigate the ground deformation pattern associated with this event, a multi-disciplinary approach is presented here. Just after the earthquake, specific GPS surveys were carried out on two small sub-networks, aimed at monitoring the eastern part of the Pernicana fault, and some baselines belonging to the northeastern EDM monitoring network of Mt. Etna were measured. The leveling route on the northeastern flank of the volcano was also surveyed. Furthermore, an investigation using SAR interferometry was performed and also the continuous tilt data recorded at a high precision sensor close to the epicenter were analyzed to constrain the coseismic deformation. The results of the geodetic surveys show a ground deformation pattern that affects the entire northeastern flank of the volcano, clearly shaped by the Pernicana fault, but too strong and wide to be related only to an M-3.7 earthquake. Leveling and DInSAR data highlight a local strong subsidence, up to 7 cm, close to the Pernicana fault. Significant displacements, up to 2 cm, were also detected on the upper part of the NE Rift and in the summit craters area, while the displacements decrease at lower altitude, suggesting that the dislocation did not continue further eastward. Three-dimensional GPS data inversions have been attempted in order to model the ground deformation source and its relationship with the volcano plumbing system. The model has also been constrained by vertical displacements measured by the leveling survey and by the deformation map obtained by SAR interferometry.  相似文献   

12.
Despite the recent recognition of Mount Etna as a periodically violently explosive volcano, the hazards from various types of pyroclastic density currents (PDCs) have until now received virtually no attention at this volcano. Large-scale pyroclastic flows last occurred during the caldera-forming Ellittico eruptions, 15–16 ka ago, and the risk of them occurring in the near future is negligible. However, minor PDCs can affect much of the summit area and portions of the upper flanks of the volcano. During the past ~ 20 years, small pyroclastic flows or base-surge-like vapor and ash clouds have occurred in at least 8 cases during summit eruptions of Etna. Four different mechanisms of PDC generation have been identified during these events: (1) collapse of pyroclastic fountains (as in 2000 and possibly in 1986); (2) phreatomagmatic explosions resulting from mixing of lava with wet rock (2006); (3) phreatomagmatic explosions resulting from mixing of lava with thick snow (2007); (4) disintegration of the unstable flanks of a lava dome-like structure growing over the rim of one of the summit craters (1999). All of these recent PDCs were of a rather minor extent (maximum runout lengths were about 1.5 km in November 2006 and March 2007) and thus they represented no threat for populated areas and human property around the volcano. Yet, events of this type pose a significant threat to the lives of people visiting the summit area of Etna, and areas in a radius of 2 km from the summit craters should be off-limits anytime an event capable of producing similar PDCs occurs. The most likely source of further PDCs in the near future is the Southeast Crater, the youngest, most active and most unstable of the four summit craters of Etna, where 6 of the 8 documented recent PDCs originated. It is likely that similar hazards exist in a number of volcanic settings elsewhere, especially at snow- or glacier-covered volcanoes and on volcano slopes strongly affected by hydrothermal alteration.  相似文献   

13.
Systematic investigation of discrete gravity measurements has continued at Mount Etna since 1986. The network now covers an area of 400 km2 with about 70 stations 0.5–3 km apart. Mass redistributions occurring at depths ranging between about 8 km below sea level and a few hundred metres below the surface (magma level changes within the shallower parts of the feeding conduits) have been identified from these data. Conventional (discrete) microgravity monitoring on a network of stations furnishes only instantaneous states of the mass distribution at continuously active systems. In order to obtain information on the rate at which the volcanic processes (and thus mass transfers) occur, three stations for continuously recording gravity where installed on Mount Etna in 1998. A 16-month long sequence from one of the continuously running stations (PDN, located 2 km from the active northeast crater at the summit of Etna volcano) is presented. After removing the effects of Earth Tide and tilt, the correlation of the residual gravity sequence with simultaneous recordings of meteorological parameters acquired at the same station was analysed. Once the meteorological effects have also been removed, continuous gravity changes are within 10 μGal of gravity changes measured using conventional microgravity observations at sites very close to the continuous station. This example shows how discrete and continuous gravity observations can be used together at active volcanoes to get a fuller and more accurate picture of the spatial and temporal characteristics of volcanic processes.  相似文献   

14.
Seismic data from the MVT-SLN sesmic station located 7 km from the summit area of Mt Etna volcano, which has been operating steadily for the last two decades, have been analysed together with the volcanic activity during the same period. Cross-correlation techniques are used to investigate possible relationships between seismic and volcanic data and to evaluate the statistical significance of the results. A number of significant correlations have been identified, showing that there is an evident relation between seismic events and flank eruptions, and a less clear relation with summit activity, which appears more linked to tremor rather than to the low-frequency events. Particularly interesting are the low-frequency events whose rate of occurrence increases, starting from 17 to 108 days, prior to the onset of the flank activity and are candidates for a useful precursor. On the other hand, a tendency towards the increase in both the duration and the occurrence rate of transients in the volcanic tremor was observed before the onset of summit eruptions. As a result of this study different stages in the volcanic activity of Mt Etna, represented by changes in the characteristics of the recorded seismic phenomena, are identified.  相似文献   

15.
We carried out a study of the seismicity and ground deformation occurring on Mt. Etna volcano after the end of the 2002–2003 eruption and before the onset of the 2004–2005 eruption. Data were recorded by the permanent local seismic network run by Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania and by geodetic surveys carried out in July 2003 and July 2004 on the GPS network. Most earthquakes were grouped in two main clusters located in the northeastern and southeastern sectors of the volcano. The areal distribution of seismic energy associated with the recorded earthquakes allowed us to highlight the main seismogenic areas of Mt. Etna. In order to better understand the kinematic processes of the volcano, 3D seismic locations were used to compute fault plane solutions, and a selected dataset was inverted to determine stress and strain tensors. The focal mechanisms in the northeastern sector show clear left-lateral kinematics along an E-W fault plane, consistent with events occurring along the Pernicana Fault system. The fault plane solutions in the southeastern sector show mainly right-lateral kinematics along a NNE and ENE fault plane and left lateral-kinematics along NW fault planes that together suggest roughly E-W oriented compression. Surface ground deformation affecting Mt. Etna measured by GPS surveys highlighted a marked inflation during the same period and exceptionally strong seawards motion of its eastern flank. The 2D geodetic strain tensor distribution was calculated and the results show mainly ENE-WSW extension coupled with WNW-ESE contraction, indicating right-lateral shear along a NW-SE oriented fault plane. The different deformation of the eastern sector of the volcano, as measured by seismicity and ground deformation, must be interpreted by considering the different depths of the two signals. Seismic activity in the southeastern sector of volcano is located between 3 and 8 km b.s.l. and can be associated with a very strong additional E-W compression induced by a pressurizing source just westwards and at the same depth, located by inverting GPS data. Ground deformation, in contrast, is mainly affected by the shallower dynamics of the fast moving eastern flank which produces a shallower opposing E-W extension. The entire dataset shows that two different processes affect the eastern flank at the same time but at different depths; the boundary is clearly located at a depth of 3 km b.s.l. and could represent the décollement surface for the mobile flank.  相似文献   

16.
?—?In the last ten years (1990–1999), 21 discrete variations of continuous tilt signal have been recorded on Mount Etna, among which one episode was caused by the opening of the eruptive fracture. The remaining 20 anomalies can be classified into two categories: the first comprises 5 “instantaneous” tilt variations recorded in correspondence to the most energetic seismic events (M L ?≥?3.3) localized on the high western part of the volcano; the second consists of 15 transient anomalies ranging from some hours to 1–2 days, observed at different times at the various tilt stations, with no correlation to seismic events or other evident volcanic episodes. The aseismic variations propagate through the volcanic edifice with a velocity between 4.5–6.0?km/day. Modeling studies suggest that the deformation is generated by a tensile source located 3–6?km SW from Etna volcano summit and 5–10?km depth.  相似文献   

17.
The 1991–1993 eruption was probably the largest on Mt. Etna for 300 years. Since then the volcano has entered an unusually quiescent period. A comprehensive record of gravity and ground deformation changes presented here bracket this eruption and give valuable insight into magma movements before, during and after the eruption. The gravity and deformation changes observed before the eruption (1990–1991) record the intrusion of magma into the summit feeder and the SSE-trending fracture system which had recently been active in 1978, 1979, 1983 and 1989, creating the feeder dyke for the 1991–1993 eruption. In the summit region gravity changes between 1992 and 1993 (spanning the end of the eruption) reflect the withdrawal of magma from the conduit followed more recently (1993–1994) by the re-filling of magma in the conduit up to pre-eruption levels. In contrast, in the vicinity of the fracture zone, gravity has remained at the 1991–1992 level, indicating that no withdrawal has occurred here. Rather, magma has solidified in the fracture system and sealed it such that the 1993–1994 increase in magma level in the conduit was not accompanied by further intrusion into the flanks. Mass calculations suggest that a volume of at least 107 m3 of magma has solidified within the southeastern flank of the volcano.  相似文献   

18.
Soil CO2 flux measurements were carried out along traverses across mapped faults and eruptive fissures on the summit and the lower East Rift Zone of Kilauea volcano. Anomalous levels of soil degassing were found for 44 of the tectonic structures and 47 of the eruptive fissures intercepted by the surveyed profiles. This result contrasts with what was recently observed on Mt. Etna, where most of the surveyed faults were associated with anomalous soil degassing. The difference is probably related to the differences in the state of activity at the time when soil gas measurements were made: Kilauea was erupting, whereas Mt. Etna was quiescent although in a pre-eruptive stage. Unlike Mt. Etna, flank degassing on Kilauea is restricted to the tectonic and volcanic structures directly connected to the magma reservoir feeding the ongoing East Rift eruption or in areas of the Lower East Rift where other shallow, likely independent reservoirs are postulated. Anomalous soil degassing was also found in areas without surface evidence of faults, thus suggesting the possibility of previously unknown structures. Received: November 2003, revised: January 2005, accepted: January 2005  相似文献   

19.
One of the major objectives of volcanology remains relating variations in surface monitoring signals to the magmatic processes at depth that cause these variations. We present a method that enables compositional and temporal information stored in zoning of minerals (olivine in this case) to be linked to observations of real-time degassing data. The integrated record may reveal details of the dynamics of gradual evolution of a plumbing system during eruption. We illustrate our approach using the 2006 summit eruptive episodes of Mt. Etna. We find that the history tracked by olivine crystals, and hence, most likely the magma pathways within the shallow plumbing system of Mt. Etna, differed considerably between the July and October eruptions. The compositional and temporal record preserved in the olivine zoning patterns reveal two mafic recharge events within months of each other (June and September 2006), and each of these magma supplies may have triggered the initiation of different eruptive cycles (July 14–24 and August 31–December 14). Correlation of these observations with gas monitoring data shows that the systematic rise of the CO2/SO2 gas values is associated with the gradual (pre- and syn-eruptive) supply of batches of gas-rich mafic magma into segments of Etna’s shallow plumbing system, where mixing with pre-existing and more evolved magma occurred.  相似文献   

20.
欧洲绝对重力仪比对观测(ECGS'07)   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了2007年11月在欧洲卢森堡Walferdange举办的第二次绝对重力比对观测的概况及结果.有20台绝对重力仪参加了比对观测,在ECGS共15个测点上的比测结果标准偏差小于2.1×10~(-8)m·s~(-2).文章简述了数据处理方法以及结果分析,中国地震局地震研究所引进的FG5/232绝对重力仪参加了本次比对,为在中国大陆建立绝对重力基准提供了重要经验.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号