首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We present new optical and infrared (IR) observations of Cir X-1 taken near apastron. Both sets of spectra show asymmetric emission lines. Archival optical observations show that an asymmetric H α emission line has been in evidence for the past 20 years, although the shape of the line has changed significantly. We present an eccentric ( e ∼0.7–0.9) low-mass binary model, where the system consists of a neutron star orbiting around a (sub)giant companion star of 3–5 M. We suggest that the broad components of the emission lines arise in a high-velocity, optically thick flow near the neutron star, while the narrow components of the optical and the IR lines arise near the companion star and a heated ejecta shell surrounding the binary respectively. In this model, the velocity of the narrow component reflects the space velocity of the binary; the implied radial velocity (+430 km s−1 after correcting for Galactic rotation) is the highest velocity known for an X-ray binary.  相似文献   

2.
We report the serendipitous discovery of a flare star observed with the ROSAT X-ray observatory. From optical spectra, which show strong and variable emission lines of the hydrogen Balmer series and neutral helium, we classify this object as a M3.0Ve star, and estimate a distance of 52 pc from published photometry. Owing to the close proximity of the star (13.6 arcmin) to the calibration source and RS CVn binary AR Lacertae, long-term X-ray coverage is available in the ROSAT archive (∼50 h spanning 6.5 yr). Two large flare events occurred early in the mission (1990 June–July), and the end of a third flare was detected in 1996 June. One flare, observed with the Position Sensitive Proportional Counter (PSPC), had a peak luminosity L X=1.1×1030 erg s−1, an e-folding rise time of 2.2 h and a decay time of 7 h. This decay time is one of the longest detected on a dMe star, providing evidence for the possibility of additional heating during the decay phase. A large High Resolution Imager (HRI) flare (peak L X=2.9×1030 erg s−1) is also studied. The 'background' X-ray emission is also variable – evidence for low-level flaring or microflaring. We find that 59 per cent of the HRI counts and 68 per cent of the PSPC counts are caused by flares. At least 41 per cent of the HRI exposure time and 47 per cent of the PSPC are affected by detectable flare enhancement.  相似文献   

3.
We present simultaneous high-resolution optical spectroscopy and X-ray data of the X-ray binary system GR Mus (XB 1254–690), obtained over a full range of orbital phases. The X-ray observations are used to re-establish the orbital ephemeris for this source. The optical data include the first spectroscopic detection of the donor star in this system through the use of the Doppler Tomography technique on the Bowen fluorescence blend (∼4630–4650 Å). In combination with an estimate for the orbital parameters of the compact object using the wings of the He  ii λ4686 emission line, dynamical mass constraints of  1.20 ≤ M X /M≤ 2.64  for the neutron star and  0.45 ≤ M 2/M≤ 0.85  for the companion are derived.  相似文献   

4.
Cygnus X-2 appears to be the descendant of an intermediate-mass X-ray binary (IMXB). Using Mazzitelli's stellar code we compute detailed evolutionary sequences for the system and find that its prehistory is sensitive to stellar input parameters, in particular the amount of core overshooting during the main-sequence phase. With standard assumptions for convective overshooting a case B mass transfer starting with a 3.5-M donor star is the most likely evolutionary solution for Cygnus X-2. This makes the currently observed state rather short-lived, of order 3 Myr, and requires a formation rate > 10−7–10−6 yr−1 of such systems in the Galaxy. Our calculations show that neutron star IMXBs with initially more massive donors (≳4 M) encounter a delayed dynamical instability; they are unlikely to survive this rapid mass transfer phase. We determine limits for the age and initial parameters of Cygnus X-2 and calculate possible dynamical orbits of the system in a realistic Galactic potential, given its observed radial velocity. We find trajectories which are consistent with a progenitor binary on a circular orbit in the Galactic plane inside the solar circle that received a kick velocity ≤200 km s−1 at the birth of the neutron star. The simulations suggest that about 7 per cent of IMXBs receiving an arbitrary kick velocity from a standard kick velocity spectrum would end up in an orbit similar to Cygnus X-2, while about 10 per cent of them reach yet larger Galactocentric distances.  相似文献   

5.
We model the broad-band X-ray spectrum of Cyg X-3 in all states displayed by this source as observed by the Rossi X-ray Timing Explorer . From our models, we derive for the first time unabsorbed spectral shapes and luminosities for the full range of spectral states. We interpret the unabsorbed spectra in terms of Comptonization by a hybrid electron distribution and strong Compton reflection. We study the spectral evolution and compare with other black hole as well as neutron star sources. We show that a neutron star accretor is not consistent with the spectral evolution as a function of L E and especially not with the transition to a hard state. Our results point to the compact object in Cyg X-3 being a massive,  ∼30 M  black hole.  相似文献   

6.
We present phase resolved optical spectroscopy and Doppler tomography of V1341 Cygni, the optical counterpart to the neutron star low-mass X-ray binary (LMXB) Cygnus X-2 (Cyg X-2). We derive a radial velocity (RV) curve for the secondary star, finding a projected RV semi-amplitude of   K 2= 79 ± 3 km s−1  , leading to a mass function of  0.51 ± 0.06 M, ∼30  per cent lower than the previous estimate. We tentatively attribute the lower value of K 2 (compared to that obtained by other authors) to variations in the X-ray irradiation of the secondary star at different epochs of observations. The limited phase coverage and/or longer timebase of previous observations may also contribute to the difference in K 2. Our value for the mass function implies a primary mass of  1.5 ± 0.3 M  , somewhat lower than previous dynamical estimates, but consistent with the value found by analysis of type-I X-ray bursts from this system. Our Doppler tomography of the broad He  ii λ4686 line reveals that most of the emission from this line is produced on the irradiated face of the donor star, with little emission from the accretion disc. In contrast, the Doppler tomogram of the N  iii λ4640.64 Bowen blend line shows bright emission from near the gas stream/accretion disc impact region, with fainter emission from the gas stream and secondary star. This is the first LMXB for which the Bowen blend is dominated by emission from the gas stream/accretion disc impact region, without comparable emission from the secondary star. This has implications for the interpretation of Bowen blend Doppler tomograms of other LMXBs for which the ephemeris may not be accurately known.  相似文献   

7.
Theoretical X-ray line profiles from colliding wind binaries   总被引:1,自引:0,他引:1  
We present theoretical X-ray line profiles from a range of model colliding wind systems. In particular, we investigate the effects of varying the stellar mass-loss rates, the wind speeds and the viewing orientation. We find that a wide range of theoretical line profile shapes is possible, varying with orbital inclination and phase. At or near conjunction, the lines have approximately Gaussian profiles, with small widths  (HWHM ∼ 0.1 v )  and definite blueshifts or redshifts (depending on whether the star with the weaker wind is in front or behind). When the system is viewed at quadrature, the lines are generally much broader  (HWHM ∼ v )  , flat-topped and unshifted. Local absorption can have a major effect on the observed profiles – in systems with mass-loss rates of a few times  10−6 M yr−1  the lower energy lines  ( E  ≲ 1 keV)  are particularly affected. This generally results in blueward-skewed profiles, especially when the system is viewed through the dense wind of the primary. The orbital variation of the linewidths and shifts is reduced in a low-inclination binary. The extreme case is a binary with   i = 0°  , for which we would expect no line profile variation.  相似文献   

8.
We present phase resolved optical spectroscopy and X-ray timing of the neutron star X-ray binary EXO 0748−676 after the source returned to quiescence in the autumn of 2008. The X-ray light curve displays eclipses consistent in orbital period, orbital phase and duration with the predictions and measurements before the return to quiescence. Hα and He  i emission lines are present in the optical spectra and show the signature of the orbit of the binary companion, placing a lower limit on the radial velocity semi-amplitude of   K 2 > 405 km s−1  . Both the flux in the continuum and the emission lines show orbital modulations, indicating that we observe the hemisphere of the binary companion that is being irradiated by the neutron star. Effects due to this irradiation preclude a direct measurement of the radial velocity semi-amplitude of the binary companion; in fact, no stellar absorption lines are seen in the spectrum. Nevertheless, our observations place a stringent lower limit on the neutron star mass of   M 1 > 1.27 M  . For the canonical neutron star mass of   M 1= 1.4 M  , the mass ratio is constrained to  0.075 < q < 0.105  .  相似文献   

9.
During a systematic search for periodic signals in a sample of ROSAT PSPC (0.1–2.4 keV) light curves, we have discovered ∼12-min large-amplitude X-ray pulsations in 1WGA J1958.2+3232, an X-ray source which lies close to the Galactic plane. The energy spectrum is well fitted by a power law with a photon index of 0.8, corresponding to an X-ray flux level of ∼ 10−12 erg cm−2 s−1. The source is probably a long-period, low-luminosity X-ray pulsar, similar to X Per, or an intermediate polar.  相似文献   

10.
Ultraluminous X-ray sources (ULXs) with   L x > 1039 erg s−1  have been discovered in great numbers in external galaxies with ROSAT , Chandra and XMM-Newton . The central question regarding this important class of sources is whether they represent an extension in the luminosity function of binary X-ray sources containing neutron stars and stellar-mass black holes (BHs), or a new class of objects, e.g. systems containing intermediate-mass BHs  (100–1000 M)  . We have carried out a theoretical study to test whether a large fraction of the ULXs, especially those in galaxies with recent star formation activity, can be explained with binary systems containing stellar-mass BHs. To this end, we have applied a unique set of binary evolution models for BH X-ray binaries, coupled to a binary population synthesis code, to model the ULXs observed in external galaxies. We find that for donor stars with initial masses  ≳10 M  the mass transfer driven by the normal nuclear evolution of the donor star is sufficient to potentially power most ULXs. This is the case during core hydrogen burning and, to an even more pronounced degree, while the donor star ascends the giant branch, although the latter phases last only ∼5 per cent of the main-sequence phase. We show that with only a modest violation of the Eddington limit, e.g. a factor of ∼10, both the numbers and properties of the majority of the ULXs can be reproduced. One of our conclusions is that if stellar-mass BH binaries account for a significant fraction of ULXs in star-forming galaxies, then the rate of formation of such systems is  ∼3 × 10−7 yr−1  normalized to a core-collapse supernova rate of 0.01 yr−1.  相似文献   

11.
RX J0720.4–3125 has recently been identified as a pulsating soft X-ray source in the ROSAT all-sky survey with a period of 8.391 s. Its spectrum is well characterized by a blackbody with a temperature of 8 × 105 K. We propose that the radiation from this object is thermal emission from a cooling neutron star. For this blackbody temperature we can obtain a robust estimate of the object's age of ∼ 3 × 105 yr, yielding a polar field ∼ 1014 G for magnetic dipole spin-down and a value of P compatible with current observations.  相似文献   

12.
A succession of near-infrared (near-IR) spectroscopic observations, taken nightly throughout an entire cycle of SS 433's orbit, reveal (i) the persistent signature of SS 433's accretion disc, having a rotation speed of  ∼500 km s−1  , (ii) the presence of circumbinary disc recently discovered at optical wavelengths by Blundell, Bowler & Schmidtobreick (2008) and (iii) a much faster outflow than has previously been measured for the disc wind, with a terminal velocity of  ∼1500 km s−1  . The increased wind terminal velocity results in a mass-loss rate of  ∼10−4 M yr−1  . These, together with the newly (upwardly) determined masses for the components of the SS 433 system, result in an accurate diagnosis of the extent to which SS 433 has super-Eddington flows. Our observations imply that the size of the companion star is comparable with the semiminor axis of the orbit which is given by     , where e is the eccentricity. Our relatively spectral resolution at these near-IR wavelengths has enabled us to deconstruct the different components that comprise the Brackett-γ (Brγ) line in this binary system, and their physical origins. With this line being dominated throughout our series of observations by the disc wind, and the accretion disc itself being only a minority (∼15 per cent) contribution, we caution against use of the unresolved Brγ line intensity as an 'accretion signature' in X-ray binaries or microquasars in any quantitative way.  相似文献   

13.
Recently discovered quasi-periodic oscillations in the X-ray brightness of low-mass X-ray binaries are used to derive constraints on the mass of the neutron star component and the equation of state of neutron star matter. The observations are compared with models of rapidly rotating neutron stars which are calculated by means of an exact numerical method in full relativity. For the equations of state we select a broad collection of models representing different assumptions about the many-body structure and the complexity of the composition of superdense matter. The mass constraints differ from their values in the approximate treatment by ∼10 per cent. Under the assumption that the maximum frequency of the quasi-periodic oscillations originates from the innermost stable orbit, the mass of the neutron star is in the range M ∼1.92–2.25 M. The quasi-periodic oscillation in the Atoll-source 4U 1820−30 in particular is only consistent with equations of state that are rather stiff at high densities, which is explainable, so far, only with pure nucleonic/leptonic composition. This interpretation contradicts the hypothesis that the protoneutron star formed in SN 1987A collapsed to a black hole, since this would demand a maximum neutron star mass below 1.6 M. The recently suggested identification of quasi-periodic oscillations with frequencies of about 10 Hz with the Lense–Thirring precession of the accretion disc is found to be inconsistent with the models studied in this work, unless it is assumed that the first overtone of the precession is observed.  相似文献   

14.
The analysis of hard X-ray INTEGRAL observations (2003–2008) of superaccreting Galactic microquasar SS433 at precessional phases of the source with the maximum disc opening angle is carried out. It is found that the shape and width of the primary X-ray eclipse are strongly variable, suggesting additional absorption in dense stellar wind and gas outflows from the optical A7I component and the wind–wind collision region. The independence of the observed hard X-ray spectrum on the accretion disc precessional phase suggests that hard X-ray emission (20–100 keV) is formed in an extended, hot, quasi-isothermal corona, probably heated by interaction of relativistic jet with inhomogeneous wind outflow from the precessing supercritical accretion disc. A joint modelling of X-ray eclipsing and precessional hard X-ray variability of SS433 revealed by INTEGRAL by a geometrical model suggests the binary mass ratio   q = mx / m v ≃  0.25–0.5. The absolute minimum of joint orbital and precessional  χ2  residuals is reached at   q ≃ 0.3  . The found binary mass ratio range allows us to explain the substantial precessional variability of the minimum brightness at the middle of the primary optical eclipse. For the mass function of the optical star   f v = 0.268 M  as derived from Hillwig & Gies data, the obtained value of   q ≃ 0.3  yields the masses of the components   mx ≃ 5.3 M, m v ≃ 17.7 M  , confirming the black hole nature of the compact object in SS433.  相似文献   

15.
The few known γ-ray binary systems are all associated with variable radio and X-ray emission. The TeV source HESS J0632+057, apparently associated with the Be star MWC 148, is plausibly a new member of this class. Following the identification of a variable X-ray counterpart to the TeV source we conducted Giant Metrewave Radio Telescope (GMRT) and Very Large Array (VLA) observations in 2008 June–September to search for the radio counterpart of this object. A point-like radio source at the position of the star is detected in both 1280-MHz GMRT and 5-GHz VLA observations, with an average spectral index, α, of ∼0.6. In the VLA data there is significant flux variability on ∼month time-scales around the mean flux density of ≈0.3 mJy. These radio properties (and the overall spectral energy distribution) are consistent with an interpretation of HESS J0632+057 as a lower power analogue of the established γ-ray binary systems.  相似文献   

16.
We have investigated multiband optical photometric variability and stability of the Hα line profile of the transient X-ray binary IGR J01583+6713. We set an upper limit of 0.05 mag on photometric variations in the V band over a time-scale of three months. The Hα line is found to consist of non-Gaussian profile and quite stable for a duration of two months. We have identified the spectral type of the companion star to be B2 IVe while the distance to the source is estimated to be ∼4.0 kpc. Along with the optical observations, we have also carried out analysis of X-ray data from three short observations of the source, two with the Swift –XRT and one with the RXTE –PCA. We have detected a variation in the absorption column density, from a value of  22.0 × 1022 cm−2  immediately after the outburst down to  2.6 × 1022 cm−2  four months afterwards. In the quiescent state, the X-ray absorption is consistent with the optical reddening measurement of   E ( B − V ) = 1.46  mag. From one of the Swift observations, during which the X-ray intensity was higher, we have a possible pulse detection with a period of 469.2 s. For a Be X-ray binary, this indicates an orbital period in the range of 216–561 d for this binary system.  相似文献   

17.
We have measured the radial velocity variation of the white dwarf secondary in the binary system containing the millisecond pulsar PSR J 1012 + 5307. Combined with the orbital parameters of the radio pulsar, we infer a mass ratio q (≡ M 1/ M 2) = 10.5 ± 0.5. Our optical spectroscopy has also allowed us to determine the mass of the white dwarf companion by fitting the spectrum to a grid of DA model atmospheres: we estimate M 2 = 0.16 ± 0.02 M⊙, and hence the mass of the neutron star is 1.64 ± 0.22 M⊙, where the error is dominated by that of M 2. The orbital inclination is 52 ± 4°. For an initial neutron star mass of ∼ 1.4 M⊙, only a few tenths of a solar mass at most has been successfully accreted over the lifetime of the progenitor low-mass X-ray binary. If the initial mass of the secondary was ∼ 1 M⊙, our result suggests that the mass transfer may have been non-conservative.  相似文献   

18.
We study the origin of unresolved X-ray emission from the bulge of M31 based on archival Chandra and XMM–Newton observations. We demonstrate that three different components are present. (i) Broad-band emission from a large number of faint sources – mainly accreting white dwarfs and active binaries, associated with the old stellar population, similar to the Galactic ridge X-ray emission of the Milky Way. The X-ray to K -band luminosity ratios are compatible with those for the Milky Way and for M32; in the 2–10 keV band, the ratio is  (3.6 ± 0.2) × 1027 erg s−1 L−1  . (ii) Soft emission from ionized gas with a temperature of about ∼300 eV and a mass of  ∼2 × 106 M  . The gas distribution is significantly extended along the minor axis of the galaxy, suggesting that it may be outflowing in the direction perpendicular to the galactic disc. The mass and energy supply from evolved stars and Type Ia supernovae is sufficient to sustain the outflow. We also detect a shadow cast on the gas emission by spiral arms and the 10-kpc star-forming ring, confirming significant extent of the gas in the 'vertical' direction. (iii) Hard extended emission from spiral arms, most likely associated with young stellar objects and young stars located in the star-forming regions. The   L X/SFR  (star formation rate) ratio equals  ∼9 × 1038 (erg s−1)(M yr−1)−1  , which is about ∼1/3 of the high-mass X-ray binary contribution, determined earlier from Chandra observations of other nearby galaxies.  相似文献   

19.
Using new and archival radio data, we have measured the proper motion of the black hole X-ray binary V404 Cyg to be  9.2 ± 0.3 mas yr−1  . Combined with the systemic radial velocity from the literature, we derive the full three-dimensional heliocentric space velocity of the system, which we use to calculate a peculiar velocity in the range 47–102 km s−1, with a best-fitting value of 64 km s−1. We consider possible explanations for the observed peculiar velocity and find that the black hole cannot have formed via direct collapse. A natal supernova is required, in which either significant mass  (∼11 M)  was lost, giving rise to a symmetric Blaauw kick of up to ∼65 km s−1, or, more probably, asymmetries in the supernova led to an additional kick out of the orbital plane of the binary system. In the case of a purely symmetric kick, the black hole must have been formed with a mass  ∼9 M  , since when it has accreted  0.5–1.5 M  from its companion.  相似文献   

20.
Magnetars, neutron stars with ultrastrong magnetic fields  ( B ∼ 1014−1015G)  , manifest their exotic nature in the form of soft gamma-ray repeaters and anomalous X-ray pulsars. This study estimates the birthrate of magnetars to be ∼0.22 per century with a Galactic population comprising ∼17 objects. A population synthesis was carried out based on the five anomalous X-ray pulsars detected in the ROSAT All Sky Survey by comparing their number to that of massive OB stars in a well-defined volume. Additionally, the group of seven X-ray dim isolated neutron stars detected in the same survey were found to have a birthrate of ∼2 per century with a Galactic population of ∼22 000 objects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号