首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In petroleum exploration and production, it is essential to have good estimations of the uncertainties on the reserves. Uncertainties on the velocity model used during the data processing are of major importance in this estimation. The generation of several velocity fields gives access to a quantified estimation of the uncertainties due to the velocity model inversion. The use of statistical methods helps in generating several important, equiprobable velocity fields, matching all the available velocity information. This paper presents an efficient simulation algorithm to generate instantaneous velocity fields, constrained by the distribution of values measured at the wells, and calibrated by the stacking velocities, taken as root-mean-square velocities. The simulations also match the covariance model given for the instantaneous velocity fields. The method is developed in a simple one-layer case with constant velocity, and then extended to more realistic situations. Finally, a real data application is shown, using data provided by ENI–Agip Division, and the efficiency of the proposed simulation method is discussed.  相似文献   

2.
三维地震勘探中叠加速度成图   总被引:3,自引:1,他引:2  
速度参数和成图方法和选取对于提高三维地震反射层构造图的精度是很重要的,文章提出了由地震资料的叠加速度来获得界面平均速度,并利用钻井资料对界面平均速度校正,得出了符合地质规律的平均速度,提高了作图精度。该方法成功地应用于华北某煤田勘探区的三维资料解释中,弥补了传统时深转换方法的不足,收到了很好的效果,所绘制的构造图深度同巷道资料吻合。  相似文献   

3.
阻抗反演是利用波阻抗与介电常数关系开展地下介质参数估计的重要技术,在探地雷达以及叠后地震资料解释中具有广泛的应用。常规阻抗反演需要钻孔或测井曲线作为约束项,约束项信息直接影响阻抗反演的估计精度。在缺少钻孔数据的实际应用中,如何开展探地雷达阻抗反演是该方法研究的重要内容之一。基于上述问题,本文提出了基于速度分析的探地雷达阻抗反演方法。其基本思想是基于多偏移距雷达数据开展速度谱分析和Dix反演,以获得不同深度的速度信息作为阻抗反演的约束项;同时,采用K-means方法自动拾取速度谱信息,大大降低了常规人工拾取误差,提高了计算效率。通过典型随机土壤介质模型,验证了本文方法在无钻孔条件下仍然可以获得较好的介电常数估计结果,并测试噪声适应能力强。最后通过美国密歇根州Wurtsmith AFB,in Oscoda区域的探地雷达数据测试了本文提出方法在探地雷达实测数据参数估计中具有较好的应用效果。  相似文献   

4.
车廷信  田钢  杜晓娟 《世界地质》2003,22(2):191-195
地震波传播过程中的频散现象造成不同频率的波在地层中传播的速度不同,应用不同频率的数据进行速度分析荻取的速度值也有所差异。速度分析的精度依赖于最大炮检距处的剩余时差与反射波视周期的比值。从理论模型数据出发,对不同频带的数据进行速度分析研究,以说明频带范围对速度精度的影响。实际数据试验结果表明,在静校正问题基本解决、高频记录信噪比较高的前提下,将数据中的高频成分用于速度分析可获得较高的速度精度和分辨率。  相似文献   

5.
High-resolution manganese K-edge X-ray absorption near edge structure spectra were collected on a set of 40 Mn-bearing minerals. The pre-edge feature information (position, area) was investigated to extract as much as possible quantitative valence and symmetry information for manganese in various “test” and “unknown” minerals and glasses. The samples present a range of manganese symmetry environments (tetrahedral, square planar, octahedral, and cubic) and valences (II to VII). The extraction of the pre-edge information is based on a previous multiple scattering and multiplet calculations for model compounds. Using the method described in this study, a robust estimation of the manganese valence could be obtained from the pre-edge region at 5% accuracy level. This method applied to 20 “test” compounds (such as hausmannite and rancieite) and to 15 “unknown” compounds (such as axinite and birnessite) provides a quantitative estimate of the average valence of manganese in complex minerals and silicate glasses. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
A sequential waveform method is developed to simulate the seismic response of basin-edge structure excited by a plane incident P-wave. The full procedure involves: (a) a previous parameterization of the investigated model using the seismic wave velocities and depths of the sedimentary stratifications; (b) an input motion determined from the records at stations installed on hard rock; (c) forward computation of the P-SV elastic wave field by means of a two-dimensional finite difference (FD) method; (d) the optimization of the model vector using simulated annealing technique and comparing the simulated seismic response of the tested structure with the observed wave field; (e) the correction of the initial model by trial-and-error by testing the differences between synthetics and observed data, and (f) the final solution obtained by iteration using the conjugate gradient algorithm. The search of an optimal basin-edge model has been parallel processed by varying the shapes and velocities of strata on the basis of the fitting of relative timing, amplitude and phase between the output and the observed data. The input motion and sensitivity have been checked and the validity of the method has been demonstrated by numeric analysis. Using the teleseismic records generated by 7 earthquakes recorded at 26 broadband seismic stations, we have studied the seismic velocity structure of the southern edge of the Jiyang depression located in the Bohai Bay basin, northern China. Two cross sections show an agreement between the velocity results and the geological sections available in the region. In addition, we obtain evidence of three hidden faults under the sections and features that suggest major extensions at the Paleogene.  相似文献   

7.
建立准确的低频模型是波阻抗反演中的重要环节,它直接影响着波阻抗反演结果的准确性。但是,常规模型建立方法的准确性受钻井数量影响明显,钻井数量越多,模型的准确性越高。在海洋深水油气勘探过程中,由于勘探费用昂贵,钻井数量非常少,很难通过常规方法建立准确的低频模型。特别是在沉积体横向特征变化较大时,地震反演的可靠性受到巨大影响。本文首先介绍了立体层析速度反演的基本理论和数据域、成像域立体层析速度反演的计算过程,综合数据域立体层析与成像域立体层析的优势获得了高精度速度模型;然后结合有限的钻井进行标定,构建出地震反演所需的低频模型,有效提升了低频模型的精度,使其达到可真实反映较大规模地质异常体的尺度;最后,将其应用于南海深水区W构造的勘探实践,提升了反演结果横向预测的准确性。  相似文献   

8.
根据地震勘探原理,以二层楔型模型和近似叠加速度求值公式为基础,提出了一种由速度谱求取平均速度或层速度的具体方法,并以二层楔形及五层楔形模型为例,计算其层速度、平均速度与正常时差速度的误差,结果表明其误差较小,完全可以满足地震资料解释的要求。通过实际应用以及与钻孔标定的平均速度的对比验证,表明该方法对于煤田地震勘探是适用的,特别是该方法可以直接求出沿界面法线方向的平均速度,提高时深转换的精度。  相似文献   

9.
准确预测储层的等效孔隙纵横比对页岩储层岩石物理建模及横波速度预测具有重要意义。为分析页岩储层孔隙纵横比及预测横波速度,提出了基于岩石物理模型的页岩孔隙纵横比反演及横波速度预测方法。本文首先通过岩石物理模型建立岩石的纵、横波速度与孔隙纵横比、孔隙度和矿物组分等参数之间的定量关系,寻找最佳孔隙纵横比;然后通过使理论预测与实际测量的纵波速度之间误差达到最小的方式反演孔隙纵横比,并以此为约束预测横波速度。实际测井数据反演结果表明,龙马溪组页岩地层的孔隙纵横比稳定,而围岩的孔隙纵横比变化范围较大;说明与围岩相比,页岩的孔隙结构更为稳定。同时,预测得到的页岩横波速度与实测横波速度的误差较小,另外对于缺少矿物组分资料的页岩层段,用平均矿物组分预测得到的横波速度误差仍较小;说明与矿物组分相比,龙马溪组页岩的纵、横波速度对孔隙纵横比参数更敏感。综上所述,利用该方法可预测到较为准确的等效孔隙纵横比和横波速度。  相似文献   

10.
由于煤田地质条件的局限性,与速度无关DMO的技术,在实际应用中只能用均方根速度来近似地震反射波的速度,而在速度分析中,较好的办法是在DMO后得的道集上作DMO速度分析,同时注意数据处理参数的合理选择,与速度无关的技术才能在煤田地震勘探中取得很好的应用效果。  相似文献   

11.
An unsolved problem of regional importance for both the evolution and structure of the Northwest German Basin is the existence or non-existence of the so-called Bramsche Massif. Explaining the nature of this massif and the cause of a related strong, positive Bouguer anomaly (Bramsche Anomaly) is critical. In the study described here, we tested an existing “intrusion model” against a newer “inversion model” in the southern Northwest German Basin. In the intrusion model, the strongly-positive Bouguer anomaly represents the gravity effect of an intrusion at depths between 6 and 10 km. More recent interpretations invoke tectonic inversion rather than intrusion to explain increased burial and the low level of hydrocarbon maturity found in boreholes. We tested these different interpretations by constructing 3D forward density models to 15 km depth. The intrusion model was updated and adjusted to incorporate recent data and we also modelled pre-Zechstein structures using different scenarios. The final model has a very good fit between measured and modelled gravity fields. Based on currently available seismic and structural models, as well as borehole density measurements, we show that the positive Bouguer anomaly cannot be modeled without a high-density, intrusive-like body at depth. However, further in-sight into the crustal structures of the Bramsche region requires more detailed investigations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
This paper is devoted to a geostatistical attempt at modeling migration errors when localizing a reflector in the ground. Starting with a probabilistic velocity model and choosing the simple geometrical optics background for the wave propagation in such media, we give the expression of the errors. This may be quantified provided the covariance of the velocity field is known. Variance of arrival times at constant offset is related to the covariance of the velocity field at hand. A practical application is given in the same paragraph. After that we give a typical schema for migration and uncertainty modeling: starting with seismic data, we make the weak seismic inversion. We then obtain the covariance of the velocity field that we use for simulating migration errors. The main issues of this methodology are discussed in the last paragraph.  相似文献   

13.
Modern space geodetic techniques enable deformation monitoring of continental plate interiors with high spatial and temporal coverage. Resolving data and results are currently evaluated for their application for the integrated assessment of seismic hazard and risk in Germany. This goes especially for regions where earthquakes are generally rare but high magnitudes are still not unrealistic while vulnerability of today’s society is steadily growing. The present contribution deals with the continuous monitoring of tectonic fracture systems in Germany using the GPS. The estimation of the station velocities with GPS and the resulting geodetic strain is supposed to provide additional input to the earthquake hazard assessment. Unfortunately, the low expected and currently seen velocities (<1–2 mm/year) make it extremely difficult to distinguish between noise and a tectonic signal. Because of the short observation interval the velocity uncertainties are about 2 mm/year in the horizontal components. The essential goal of this program is to provide and model highly precise deformation data and to discuss its needs for a better assessment of geological hazard, especially for the most active tectonic regions in Germany, the Rhine-Graben, the Swabian Alb, the Alpine foreland, and the Vogtland. Here we present preliminary results from 2 years of measurements at currently 150 GPS stations throughout Germany. The time span of this program has proven to be too short and the density of the station network to be not dense enough yet for reliable significant horizontal station velocities and supporting the earthquake hazard assessment.  相似文献   

14.
A 1-D velocity model for the Marche region (Central Italy) was computed by inverting P- and S-wave arrival times of local earthquakes. A total of 160 seismic events with a minimum of ten observations, a travel time residual ≤0.8 s and an azimuthal gap lower than 180° have been selected. This “minimum 1-D velocity model” is complemented by station corrections, which can be used to take into account possible near-surface velocity heterogeneities beneath each station. Using this new P-wave velocity model and the program HYPOELLIPSE (Lahr 1999), the selected local events were relocated. Earthquake locations in this study are of higher quality with respect to the original ones. The obtained minimum 1-D velocity model can be used to improve the routine earthquake locations and represents a further step towards more detailed seismotectonic studies of the area.  相似文献   

15.
The plate margin features defining the Arabian Sea Triple Junction (ASTJ) are: the Aden Ridge (AR), Sheba Ridge (SR) with their intervening Alula-Fartak Transform (AFT), Carlsberg Ridge (CR) and Owen Fracture Zone (OFZ). Exact nature of ASTJ is presently debated: whether it is RRF (ridge-ridge-fault) or RRR (ridge-ridge-ridge) type. A revised seismicity map for ASTJ is given here using data for a period little more than a century. “Point density spatial statistical criterion” is applied to short-listed 742 earthquakes (mb ≥ 4.3), 10 numbers of spatio-temporal seismic clusters are identified for ASTJ and its arms. Relocated hypocentres help better constraining the cluster identification wherever such data exist. Seismic clusters actually diagnose the most intense zones of strain accumulation due to far field as well as the local stress operating at ASTJ. An earthquake swarm emanating from a prominent seismic cluster below SR provides an opportunity to investigate the pore pressure diffusion process (due to the active source) by means of “r-t plot”. Stress and faulting pattern in the active zones are deduced from 43 CMT solutions. While normal or lateral faulting is characteristic for these arms, an anomalous thrust earthquake occurs in the triangular ‘Wheatley Deep’ deformation zone proximal to ASTJ. The latter appears to have formed due to a shift of the deformational front from OFZ towards a transform that offsets SR. Though ASTJ is still in the process of evolution, available data favour that this RRF triple junction may eventually be converted to a more stable RRR type.  相似文献   

16.
Earthquake hazard zonation of Sikkim Himalaya using a GIS platform   总被引:2,自引:1,他引:1  
An earthquake hazard zonation map of Sikkim Himalaya is prepared using eight thematic layers namely Geology (GE), Soil Site Class (SO), Slope (SL), Landslide (LS), Rock Outcrop (RO), Frequency–Wavenumber (F–K) simulated Peak Ground Acceleration (PGA), Predominant Frequency (PF), and Site Response (SR) at predominant frequencies using Geographic Information System (GIS). This necessitates a large scale seismicity analysis for seismic source zone classification and estimation of maximum earthquake magnitude or maximum credible earthquake to be used as a scenario earthquake for a deterministic or quasi-probabilistic seismic scenario generation. The International Seismological Center (ISC) and Global Centroid Moment Tensor (GCMT) catalogues have been used in the present analysis. Combining b-value, fractal correlation dimension (Dc) of the epicenters and the underlying tectonic framework, four seismic source zones are classified in the northeast Indian region. Maximum Earthquake of M W 8.3 is estimated for the Eastern Himalayan Zone (EHZ) and is used to generate the seismic scenario of the region. The Geohazard map is obtained through the integration of the geological and geomorphological themes namely GE, SO, SL, LS, and RO following a pair-wise comparison in an Analytical Hierarchy Process (AHP). Detail analysis of SR at all the recording stations by receiver function technique is performed using 80 significant events recorded by the Sikkim Strong Motion Array (SSMA). The ground motion synthesis is performed using F–K integration and the corresponding PGA has been estimated using random vibration theory (RVT). Testing for earthquakes of magnitude greater than M W 5, a few cases presented here, establishes the efficacy and robustness of the F–K simulation algorithm. The geohazard coverage is overlaid and sequentially integrated with PGA, PF, and SR vector layers, in order to evolve the ultimate earthquake hazard microzonation coverage of the territory. Earthquake Hazard Index (EHI) quantitatively classifies the terrain into six hazard levels, while five classes could be identified following the Bureau of Indian Standards (BIS) PGA nomenclature for the seismic zonation of India. EHI is found to vary between 0.15 to 0.83 quantitatively classifying the terrain into six hazard levels as “Low” corresponding to BIS Zone II, “Moderate” corresponding to BIS Zone III, “Moderately High” belonging to BIS Zone IV, “High” corresponding to BIS Zone V(A), “Very High” and “Severe” with new BIS zones to Zone V(B) and V(C) respectively.  相似文献   

17.
The numerical stability of linear systems arising in kriging, estimation, and simulation of random fields, is studied analytically and numerically. In the state-space formulation of kriging, as developed here, the stability of the kriging system depends on the condition number of the prior, stationary covariance matrix. The same is true for conditional random field generation by the superposition method, which is based on kriging, and the multivariate Gaussian method, which requires factoring a covariance matrix. A large condition number corresponds to an ill-conditioned, numerically unstable system. In the case of stationary covariance matrices and uniform grids, as occurs in kriging of uniformly sampled data, the degree of ill-conditioning generally increases indefinitely with sampling density and, to a limit, with domain size. The precise behavior is, however, highly sensitive to the underlying covariance model. Detailed analytical and numerical results are given for five one-dimensional covariance models: (1) hole-exponential, (2) exponential, (3) linear-exponential, (4) hole-Gaussian, and (5) Gaussian. This list reflects an approximate ranking of the models, from best to worst conditioned. The methods developed in this work can be used to analyze other covariance models. Examples of such representative analyses, conducted in this work, include the spherical and periodic hole-effect (hole-sinusoidal) covariance models. The effect of small-scale variability (nugget) is addressed and extensions to irregular sampling schemes and higher dimensional spaces are discussed.  相似文献   

18.
Overview of Taiwan Earthquake Loss Estimation System   总被引:2,自引:1,他引:2  
The National Science Council (NSC) of Taiwan started the HAZ-Taiwan project in 1998 to promote researches on seismic hazard analysis, structural damage assessment, and socio-economic loss estimation. The associated application software, “Taiwan Earthquake Loss Estimation System (TELES)”, integrates various inventory data and analysis modules to fulfill three objectives. First, it helps to obtain reliable estimates of seismic hazards and losses soon after occurrence of large earthquakes. Second, it helps to simulate earthquake scenarios and to provide useful estimates for local governments or public services to propose their seismic disaster mitigation plans. Third, it helps to provide catastrophic risk management tools, such as proposing the seismic insurance policy for residential buildings. This paper focuses on the development and application of analysis modules used in early loss estimation system. These modules include assessments of ground motion intensity, soil liquefaction potential, building damage and casualty.  相似文献   

19.
推导了基于角度域共成像点道集的叠前深度偏移层析速度分析公式,提出一种共散射点(CSP)道集与角道集串级优化叠前偏移的速度分析方法。该方法通过基于CSP道集的叠前时间偏移速度分析获取初始速度,利用基于角度域共成像点道集(ADCIGs)的叠前深度偏移速度分析进行速度更新。实现步骤概括为:将叠前地震数据映射为CSP道集,利用CSP道集叠加速度谱拾取能量团获取均方根(RMS)速度场;通过Dix公式将RMS速度转换为层速度作为层析的初始输入速度,基于ADCIGs实现叠前深度偏移层析速度反演,最终得到高精度的叠前偏移速度场。断层模型和实际资料试算结果验证了该方法的正确性和有效性。  相似文献   

20.
When seismic data and porosity well logs contain information at different spatial scales, it is important to do a scale-matching of the datasets. Combining different data types with scale mismatch can lead to suboptimal results. A good correlation between seismic velocity and rock properties provides a basis for integrating seismic data in the estimation of petrophysical properties. Three-dimensional seismic data provides an unique exhaustive coverage of the interwell reservoir region not available from well data. However, because of the limitations of measurement frequency bandwidth and view angles, the seismic image can not capture the true seismic velocity at all spatial scales present in the earth. The small-scale spatial structure of heterogeneities may be absent in the measured seismic data. In order to take best advantage of the seismic data, factorial kriging is applied to separate the small and large-scale structures of both porosity and seismic data. Then the spatial structures in seismic data which are poorly correlated with porosity are filtered out prior to integrating seismic data into porosity estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号