共查询到18条相似文献,搜索用时 62 毫秒
1.
纵向等效抗弯刚度是采用等效连续化模型进行盾构隧道纵向结构分析的关键参数,其在纵向轴力和弯矩耦合作用下具有明显的非线性特征。在既有盾构隧道非线性抗弯刚度理论的基础上,考虑盾构隧道的横向变形特征,建立考虑盾构隧道横向性能的纵向非线性等效抗弯刚度计算模型,基于椭圆积分严格推导纵向轴力和弯矩耦合作用下盾构隧道在环缝完全闭合、半张开和完全张开3种变形模式下的纵向等效抗弯刚度,并根据中性轴位置方程得到各弯曲模式的临界轴力和弯矩判据,通过与既有解析模型计算结果、模型试验数据和数值计算结果的对比验证了所提出的模型的可靠性。采用该模型开展了纵向轴力和弯矩耦合作用下盾构隧道横向性能对其纵向刚度的影响分析,讨论了理论模型构建时非严格椭圆积分推导的计算误差,并基于该模型提出了附加荷载作用下盾构隧道横纵向变形的耦合分析方法。研究结果表明:该模型的解析推导是准确可靠的;盾构隧道的纵向等效抗弯刚度与其横向刚度密切相关,且为正相关;在压弯状态下盾构隧道纵向等效抗弯刚度随横向刚度的增大而得到明显提升。提出的模型构建了轴力和弯矩耦合作用下盾构隧道横、纵向刚度的匹配性,为盾构隧道横、纵向结构耦合分析搭建了桥梁。 相似文献
2.
基于盾构隧道纵向沉降的纵向等效刚度反分析 总被引:1,自引:0,他引:1
随着我国经济建设的深化,城市轨道交通建设得到迅速发展。在盾构隧道常见病害中,盾构隧道纵向沉降会对隧道纵向性能造成不利影响。盾构隧道结构刚度是结构性能的重要力学性能指标之一,采用盾构隧道纵向等效连续化模型,分别对于纵向等效刚度为常数以及沿盾构隧道纵向变化的情况,基于盾构隧道纵向沉降对纵向等效刚度进行反分析,探究盾构隧道纵向沉降对隧道纵向等效刚度的影响。分析得出,(1)当隧道纵向刚度有效率? 沿隧道纵向为常数时,随着实际沉降的增大,隧道纵向刚度有效率? 变小,且随着实际沉降的增大趋于平稳;(2)当隧道纵向刚度有效率 沿隧道纵向变化时,实际沉降与理论沉降之比小于1时,反算出得到的隧道纵向刚度有效率 沿纵向中间大,两边小;实际沉降与理论沉降之比大于1时,反算得到的隧道纵向刚度有效率 沿纵向中间小,两边大;(3)根据反算出的纵向刚度有效率 计算所得到的沉降曲线与实际沉降曲线有所差异。 相似文献
3.
4.
离心模型中的固结时间是原型固结时间的1/n2,能够在较短的时间内模拟软土地基的长期沉降。以上海地铁4号线修复段双线盾构隧道为研究对象,利用离心模型试验研究了隧道的纵向长期沉降及稳定性特性,预测了15-20a之后完好段、连接段和修复段隧道纵向沉降量和沉降分布。最后,得出了连接段两端差异沉降最大的结论。并提出隧道与修复段的连接刚度应采用刚性连接,以提高连接点附近隧道适应变形能力的修复意见。 相似文献
5.
盾构机在沿曲线掘进或轴线纠偏过程中,盾尾非对称推力会在管片端部产生附加弯矩,从而引起隧道发生纵向变形。现有解析方法多是将盾构隧道简化为等效连续梁,不能考虑隧道管片环间接头的弱化。首先,建立一种能够同时考虑环间张开和剪切错台的简化纵向梁-弹簧盾构隧道模型(simplified longitudinal beam-spring shield tunnel model,简称SLBSM);其次,将在建隧道简化为Winkler地基上的SLBSM,采用状态空间法推导了非对称推力作用下盾构隧道纵向变形解析解答。通过与既有文献有限元及现有两种连续梁模型计算结果进行对比,验证了所提方法的可靠性和适用性,并对部分参数进行敏感性分析。研究结果表明:连续梁模型计算得到的隧道纵向位移表现为连续特征,而所提方法得到的隧道纵向位移表现为非连续特征,隧道纵向位移在接头处会发生突变;通过参数分析可知:增大接头转动刚度可有效降低隧道隆起和环间张开量;增大接头剪切刚度可有效降低环间错台量,但会导致隧道隆起和剪力的增加;增大地基刚度能显著降低隧道环间张开量和隆起,但会导致环间错台量的增加;管片始端轴力对隧道纵向变形的影响不可... 相似文献
6.
7.
8.
盾构隧道掘进引起上方已建隧道的纵向变形研究 总被引:1,自引:0,他引:1
城市地铁隧道施工中经常遇到新建隧道下穿上方已建隧道的例子,如何提前预测已建隧道的纵向变形是目前工程界普遍关心的问题。基于能够考虑土体变形连续性的Kerr地基梁理论,分别将已建隧道简化为欧拉伯努利梁和铁木辛柯梁,将新建隧道对已建隧道的作用简化为高斯分布荷载,建立了新建隧道施工对上方已建隧道影响的解析分析方法;并利用离心机试验结果进行了验证。分析了地层损失率、荷载形状参数和隧道与土体相对抗弯刚度对已建隧道纵向变形的影响。探讨了隧道剪切刚度对隧道纵向变形的影响。研究发现,当隧道剪切刚度趋于无穷大时,Kerr地基上的铁木辛柯梁退化为欧拉伯努利梁;对于抗弯刚度较大的隧道(如抗弯刚度大于7.54×106 kN?m2),Kerr地基梁具有较好的适用性;已建隧道的剪切刚度对其纵向变形何纵向曲率产生显著影响;当隧道等效剪切刚度有效系数≤1/4时,必须考虑隧道剪切刚度对隧道纵向变形的影响。将所提分析方法应用于上海盾构隧道穿越工程中,并与现场实测结果进行对比,验证了方法的合理性。 相似文献
9.
上下重叠隧道施工时,后挖隧道施工过程对先建隧道是一种“卸载”作用,受此影响,先建隧道的衬砌管片将朝后挖隧道方向变形,但这种影响作用是暂时的。以深圳地铁3号线老街站-晒布路站区间重叠隧道工程为背景,采用三维有限元数值计算和室内离心模型试验相结合的手段,对上部隧道(后挖隧道)施工引起的下方已建隧道纵向变位进行了研究。结果表明,后挖隧道施工引起的先建隧道不均匀沉降主要出现在约掌子面前方3.5D(D为隧道直径)到后方3D的范围内。基于此,探讨了应对这种暂时纵向效应的对策措施,主要包括临时压重和临时内撑。在先建隧道位于掌子面后方(0~1)D、(1~2)D、(2~3)D范围内分别设置20 t/3 m、20 t/6 m、20 t/9 m的临时压重,且在掌子面前方4D和后方4D范围内为先建隧道设置临时内撑,可以较好地减小由于后挖隧道施工引起的先建隧道附加不均匀变形。 相似文献
10.
盾构隧道施工期衬砌管片受力特性及其影响分析 总被引:3,自引:0,他引:3
针对施工期盾构隧道管片衬砌的受力特性及其施工荷载对管片结构造成的影响开展研究。首先,对施工期管片所受施工荷载进行系统总结,包括千斤顶推力、注浆压力、上浮力、盾壳作用力、拼装荷载及其他荷载等;进而将施工阶段管片衬砌的受力特性归纳为典型三维特性、不确定性及不可忽视性等三方面。在此基础上,对施工荷载对管片结构的影响进行了分析讨论,包括施工期的管片裂缝、局部破损、止水条损坏、管片渗漏、管片错台等。最后,从掘进千斤顶控制、注浆压力控制、螺栓二次预紧等角度对施工期盾构隧道的管片破损保护工作提出了建议。分析表明,对盾构隧道施工期管片受力特性及其影响的研究亟待深入,管片设计及相关规范亦应更加重视施工荷载的作用及其影响 相似文献
11.
大断面宽幅盾构管片三维内力分布分析 总被引:1,自引:1,他引:1
以武汉长江隧道工程为例,采用三维壳-弹簧计算模型,对不同幅宽和不同环间接头剪切刚度的管片衬砌结构力学分布进行了分析,并与梁-弹簧模型结果在量值上做了全面比较。研究表明,全环最大弯矩发生在幅宽边缘部位;环间接头剪力对幅宽边缘影响较大,而对幅宽中央影响偏小;当环间接头剪切刚度为非无穷大时,壳模型的幅宽边缘最大弯矩值略微大于梁弹簧模型相应结果,而当无穷大时两者数值则基本相等;壳模型的幅宽中央的最大弯矩值介于梁模型错缝与通缝拼装的数值之间,并随幅宽加大而趋于接近通缝拼装的结果;大幅宽条件下,不宜将梁-弹簧模型的环间最大剪力结果作为环间接头抗剪设计的计算依据。 相似文献
12.
砂性地层中地铁盾构隧道管片结构受力特征研究 总被引:6,自引:0,他引:6
以南京地铁一号线穿越砂性地层盾构隧道为研究对象,对管片环施工全过程和稳定期进行了现场系统研究。采用考虑结构与地层相互作用的梁-弹簧模型进行理论计算,探讨了砂性地层中盾尾注浆、土体应力松弛、水压力及拼装方式对管片环土水压力、纵缝张开量、内力等的分布和变化规律的影响,揭示了砂性地层中地铁盾构隧道管片环的结构性能及其与地层的相互作用特性,提出了适用于砂性地层条件下的地铁盾构隧道设计原则与方法。 相似文献
13.
水下盾构隧道纵向上浮理论解及工程应用 总被引:1,自引:0,他引:1
考虑静动态上浮力、浆液时变性和上覆土体反向压缩性因素,基于弹性地基梁的弯曲微分方程、有限元理论和变形、转角、剪力以及弯矩协调方程和边界条件,获得了水下盾构隧道纵向上浮的理论解,并运用于“河北第一盾”曹妃甸工业区综合管廊工程。工程算例表明,理论解与数值解最大误差在2.5%以内,与正常掘进段监测值吻合度较高,可用于分析水下盾构隧道纵向上浮。另外,所得理论解摒弃了数值计算模型建立和细化单元的繁琐过程,易被设计、施工人员接受和应用,同时也为完善相关设计规范提供一定参考。 相似文献
14.
盾构法隧道施工阶段管片的力学分析 总被引:5,自引:1,他引:5
盾构隧道衬砌管片在施工阶段处于复杂的受力状态,易出现局部破损现象。阐明了盾构施工阶段管片的受力特点,对其常见的局部破损现象及产生原因进行了总结与分析,在此基础上构建了施工阶段的管片力学模型,即一端固定、一端简支的受力构件。以某盾构工程施工参数为例,运用有限元方法实现该力学模型,按不同工况对其进行了数值模拟,并与现场实测结果进行了对比分析。研究表明:盾构施工阶段,衬砌管片会在第5~7环之间产生局部破损,与现场出现的管片破损部位十分接近;千斤顶推力的大小、倾角及偏差是导致施工阶段管片局部破损的主要原因,并给出了盾构施工阶段减轻管片破损的一些建议。 相似文献
15.
盾构施工仿真及其相邻影响的数值分析 总被引:27,自引:5,他引:27
针对地下结构传统的简化计算方法的不足,采用适应性较强的有限元法,对盾构隧道施工过程中的施工步骤、管片与土层接触面以及开挖过程中地应力释放等多方面进行了有限元模拟,并且利用同济曙光软件计算和分析了盾构施工对临近构筑物的影响以及地层的变化情况,从计算结果来看是较为满意的。能够为盾构隧道衬砌的设计和施工提供有益的参考。 相似文献
16.
17.
盾构隧道地震响应分析方法及工程应用 总被引:3,自引:0,他引:3
盾构隧道在地震作用下可发生接头螺栓剪断、管片开裂、管片端部混凝土脱落、大变形及错台等震害,将影响隧道的安全与正常使用,因此,建立合理的分析模型与计算方法来研究隧道可能的震害具有重要的工程防震减灾意义。采用嵌入梁单元模拟接头,厚壳单元模拟管片,无限元作为动力人工边界,同时在管片之间及管片与地层间设置非连续接触关系,更好地模拟了管片厚度方向应力及管片与地层间的相互作用,建立了厚壳-接触-无限元地震响应分析模型。并将该模型运用于某大直径越江盾构隧道的抗震分析中,计算结果与盾构隧道震害特征较为吻合,表明该模型可反映盾构隧道的真实地震动响应。并应用该模型分析了壁后注浆层材料参数及结构与土体相互作用对管片动力响应的影响。所建模型对于研究盾构或TBM施工隧道的震害分析具有很好的推广价值。 相似文献
18.
盾构隧道实测土压力分布规律及影响因素研究 总被引:1,自引:0,他引:1
以大量现场实测土压力为基础,分析了影响盾构隧道衬砌土压力的一些主要因素,总结出不同地层地铁盾构隧道长期稳定土压力的分布规律,并探讨了盾构施工期土压力随时空的变化情况。研究得出,地下水位高低对稳定土压力大小及分布影响较大;作用在管片上的长期土压力大小与地层衬砌刚度系数有关,当地层衬砌刚度系数为1.5时,管片竖向及水平土压力都较小;盾构施工期临时荷载对管片土压力影响不可忽视,无论是黏土地层还是砂土地层,大的注浆压力及注浆率将导致作用在管片上的稳定土压力分布不均;管片土压力可按时空分为4个阶段,拼装阶段、同步注浆阶段、浆液凝固阶段及后期稳定阶段,其中同步注浆阶段管片周边最大土压力为稳定阶段的2~3倍。 相似文献