首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coronal Faraday rotation of the linearly polarized carrier signals of the HELIOS spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3–10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975–1976 was found to decrease with radial distance according to r , where α = 2.7 ± 0.2. The mean field magnitude was 1.0 ± 0.5 × 10 ?5 tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.  相似文献   

2.
Coronal Faraday rotation of the linearly polarized carrier signals of the HELIOS spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3–10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975–1976 was found to decrease with radial distance according to r , where = 2.7 ± 0.2. The mean field magnitude was 1.0 ± 0.5 × 10 –5 tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.  相似文献   

3.
We extend Jokipii and Lerche's analysis of the turbulent structure of our Galaxy by means of a study of the rotation measure of extragalactic sources. Like them we use a simple, statistically homogeneous and isotropic disc model of the Galaxy and assume that the magnetic field has both an average component and a fluctuating one. We assume that the electron density is proportional to some power of the magnetic field (N eB n with 1n2). Using the rotation measure data on 242 extragalactic sources given by Vallée and Kronberg we consider both an exponential and a Gaussian two-point correlation function for the (Gaussian) fluctuating component of the magnetic field with a correlation lengthL. We find reasonable agreement between theory and observations for an average magnetic field of about 3 G, a fluctuating magnetic field component with an amplitude of about 2.6G, an average electron density of about 0.03 cm–3, a fluctuating density component of about 0.05 cm–3, and a correlation length of about 300 pc.  相似文献   

4.
Pioneer VI was launched into a circumsolar orbit on December 16, 1965, and was occulted by the sun in the latter half of November, 1968. During the occultation period, the 2292-MHz S-band telemetry carrier underwent Faraday rotation due to the interaction of this signal with the plasma and magnetic field in the solar corona. The NASA/JPL 210-ft diameter antenna of the Deep Space Network near Barstow, California, was used for the measurement. The antenna feed was modified for automatic polarization tracking for this experiment. The measurement results are interpreted with a theoretical model of the solar corona. This model consists of a modified Allen-Baumbach electron density and a coronal magnetic field calculated both from Mount Wilson magnetograph observations using a source surface model and field extrapolations from the Explorer 33 satellite magnetometer. The observations and the calculated rotation show general agreement with respect to magnitude, sense, and timing, suggesting the source-surface model and field extrapolations from 1 AU are a valid technique to obtain the magnetic field in the corona from 4 to 12 solar radii. Variations present can easily be ascribed to density enhancements known to be present in the corona. Longitudinal variations of the density in the corona cannot be obtained from coronagraph observations, and thus a purely radial variation was assumed. An improved fit to the Faraday rotation data is obtained with an equatorial electron density $$N = 10^8 \left( {\frac{{6000}}{{R^{10} }} + \frac{{0.002}}{{R^2 }}} \right)...{\text{ cm}}^{{\text{ - 3}}} {\text{ (4 < }}R < 12){\text{ }}...$$ where R is in solar radii. The work of W. V. T. Rusch and J. E. Ohlson was supported in part by research sponsored by the Joint Services Electronics Program through the Air Force Office of Scientific Research under Grant AF-AFOSR 69-1622A at the University of Southern California. The work done by K. H. Schatten was in part supported by the National Academy of Science on a National Research Council postdoctoral fellowship. The work of J. M. Wilcox was supported in part by the Office of Naval Research under Contract Nonr 3656(26), by the National Aeronautics and Space Administration under Grant NGR 05-003-230, and by the National Science Foundation under Grant GA-1319 at the University of California at Berkeley.  相似文献   

5.
We review the current observational knowledge of the interstellar magnetic field within ∼150 pc ofthe Galactic center. We also discuss the various theoretical scenarios that have been put forward to explain the existing observations. Our critical overview leads to two important conclusions: (1) The interstellar magnetic field near the GC is approximately poloidal on average in the diffuse intercloud medium and approximately horizontal in dense interstellar clouds. (2) In the general intercloud medium, the field is relatively weak and probably close to equipartition with cosmic rays (B ∼ (6–20) μ G), but there exist a number of localized filaments where the field is much stronger (some filaments could possibly have B ≳ 1 mG). In dense interstellar clouds, the field is probably rather strong, with typical values ranging between a few 0.1 mG and a few mG (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this paper we construct a polytropic model distorted by toroidal magnetic field and differential rotation. We then compute states of critical rotation of this model. In the computations we implement the so-called complex-plane strategy and multiple partition technique which are numerical methods deviced recently by the first author.  相似文献   

7.
In this paper the numerical solutions of the Unno-Beckers's equations for the magneto-sensitive line Fei 5250.216 are used to demonstrate the importance and role of Faraday rotation in sunspot magnetic fields and to study the influence of this effect on the measurements of the azimuth of the transverse field. We propose a method to determine the intrinsic direction of the transverse field with the observed azimuthal angle of the plane of linear polarization.  相似文献   

8.
An interstellar medium consisting of regular and turbulent magnetic fields, thermal gas and cosmic rays is tested for stability in a stellar gravitational field. Cosmic rays are described by the diffusion-convection equation and the stability region of the system is determined. It is shown that the presence of cosmic rays is a stabilizing factor if the cosmic-ray diffusion coefficient is sufficiently small. The dependence of the maximum growth rate of instability on the cosmic-ray diffusion coefficient is qualitatively determined.  相似文献   

9.
The interaction of an astrophysical shock with a cloud typically occurs at high Reynolds number, and in such cases will be highly turbulent. However, the formation of fully developed turbulence is usually prevented by the artificial viscosity inherent in hydrodynamical simulations. Upstream structures mean that the flow behind the shock is also likely to be turbulent, as it sweeps over such inhomogeneities. We study the nature of adiabatic shock-cloud interactions using a subgrid compressible kε turbulence model.  相似文献   

10.
In this paper we compute differentially rotating polytropic models distorted by toroidal magnetic field. In particular, we study rotating sequences, which do not terminate with a critical rotation. In the computations we use the so-called complex-plane strategy and multiple partition technique, which are numerical methods developed recently by the first author.  相似文献   

11.
Balthasar  H. 《Solar physics》1999,187(2):389-403

The magnetic field strength in sunspots was derived from time series of two-dimensional spectra taken with the Göttingen 2D-spectrometer at the Vacuum Tower Telescope on Tenerife in August 1997. For the present measurements the magnetically sensitive line Fe?i 684.3 nm was selected. The main spot of the investigated sunspot group has a maximum magnetic field strength of 2270 G. Enhanced power of the magnetic field variations was found at the boundary between umbra and penumbra for all frequency ranges. These fluctuations are not well correlated with those of intensity variations or line shifts. Other spatial power peaks occur in a dark patch inside the centreside penumbra and at the centres of some accompanying small spots. Since no clear peaks at certain frequencies are found, the variations are not harmonic oscillations. A possible relation to Hα flares is investigated. There are several cases of published observations of magnetic field variations where flares occurred soon after the measurements, but very little before. Therefore it is not very probable that flares act as exciters of magnetic field variations.

  相似文献   

12.
The effect of rotation and a general magnetic field on the luminosity, radius, and effective temperature of the upper Main-Sequence stars has been investigated using a perturbation analysis. The magnetic field profile prevailing inside the star is assumed to have both poloidal and toroidal components. The case of constant as well as differential rotation is admitted. Model calculations indicate that these stellar parameters modify considerably as a result of coupling between rotation and the magnetic field.  相似文献   

13.
A number of important processes taking place around strong shocks in supernova remnants (SNRs) depend on the shock obliquity. The measured synchrotron flux is a function of the aspect angle between interstellar magnetic field (ISMF) and the line of sight. Thus, a model of non-thermal emission from SNRs should account for the orientation of the ambient magnetic field. We develop a new method for the estimation of the aspect angle, based on the comparison between observed and synthesized radio maps of SNRs, making different assumptions about the dependence of electron injection efficiency on the shock obliquity. The method uses the azimuthal profile of radio surface brightness as a probe for orientation of ambient magnetic field because it is almost insensitive to the downstream distribution of magnetic field and emitting electrons. We apply our method to a new radio image of SN 1006 produced on the basis of archival Very Large Array and Parkes data. The image recovers emission from all spatial structures with angular scales from a few arcsec to 15 arcmin. We explore different models of injection efficiency and find the following best-fitting values for the aspect angle of SN 1006:  φo= 70o± 4.2o  if the injection is isotropic,  φo= 64o± 2.8o  for quasi-perpendicular injection (SNR has an equatorial belt in both cases) and  φo= 11o± 0.8o  for quasi-parallel injection (polar-cap model of SNR). In the last case, SN 1006 is expected to have a centrally peaked morphology contrary to what is observed. Therefore, our analysis provides some indication against the quasi-parallel injection model.  相似文献   

14.
Faraday rotation angle records of VHP (137.35 MHz) signals from ATS-3 received at São José dos Campos (Magnetic dip-23.7°) exhibit nighttime fluctuations during equinoctial and summer months. These fluctuations have periodicities ranging from several seconds to about an hour. We investigate the relationship between these fluctuations and the F-layer irregularities.  相似文献   

15.
The differential rotation of the large-scale photospheric magnetic field has been investigated with an autocorrelation technique using synoptic charts of the photospheric field during the interval 1959–66. Near the equator the rotation period of the field is nearly the same as the rotation rate of long-lived sunspots studied by Newton and Nunn. Away from the equatorial zone the field has a significantly shorter rotation period than the spots. Over the entire range of latitudes investigated the average rotation period of the photospheric magnetic field was about 1 1/4 days less than the average rotation period of the material observed with Doppler shifts by Livingston and by Howard and Harvey. Near the equator the photospheric field results agree with the results obtained from recurrent sunspots, while above 15° the photospheric field rotation rates agree with the rotation rates of the K corona and the filaments.  相似文献   

16.
The autocorrelation function of Faraday rotation measures is discussed in terms of different types of galactic field configurations. The autocorrelation function evaluated from published data of 139 radio galaxies and quasars is found to resemble a form typical for a quasi-longitudinal field, whereas the autocorrelation function of 38 pulsars turns out to be of the form expected for a longitudinal field. These observations are interpreted with respect to the position of the solar system relative to the neutral sheet in a quasi-longitudinal field configuration.Rotation measures calculated theoretically using a mathematical formulation of the quasi-longitudinal field model are adapted to experimental data. The resulting polarity of the global field structure is discussed in connection with the original dipole-like configuration the magnetic momentum vector of which is found to have been antiparallel to the angular momentum vector of the Galaxy. The relation between the field strength and the density of electrons is found to be consistent with earlier results.  相似文献   

17.
In this work we study how the turbulent component of the Galactic magnetic field (GMF) affects the propagation of ultrahigh energy heavy nuclei. We investigate first how the images of individual sources and of the supergalactic plane depend on the properties of the turbulent GMF. Then we present a quantitative study of the impact of the turbulent field on (de-)magnification of source fluxes, due to magnetic lensing effects. We also show that it is impossible to explain the Pierre Auger data assuming that all ultrahigh energy nuclei are coming from Cen A, even in the most favorable case of a strong, extended turbulent field in the Galactic halo.  相似文献   

18.
19.
We measured a sample of 150 pulsar rotation measures (RMs) using the 20-cm receiver of the Parkes 64-m radio telescope. 46 of the pulsars in our sample have not had their RM values previously published, whereas 104 pulsar RMs have been revised. We used a novel quadratic fitting algorithm to obtain an accurate RM from the calibrated polarization profiles recorded across 256 MHz of receiver bandwidth. The new data are used in conjunction with previously known dispersion measures and the NE2001 electron-density model to study models of the direction and magnitude of the Galactic magnetic field.  相似文献   

20.
A new computational method and algorithm, based on complex Fourier analysis, is used to derive the spectral density of plane and circularly polarized fluctuation components of the interplanetary magnetic field. Applications of the method have been made using HEOS 2 (1 AU), Pioneer 10 (5 AU), Pioneer 11 (20 AU), and ICE (Giocabini-Zinner's comet) data sets. The results show the existence of circularly polarized MHD waves in all cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号