首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
以三江源区为研究区,主要利用一元线性趋势法和简单相关分析法分析了源区1982~2004年生长季累积NDVI的时间序列变化特征及其与气温、降雨、光照时间、风速、地表温度这些气候因子之间的相关性,从月尺度上研究了三江源区植被NDVI对气候因子响应的滞后性特征。最后表明,生长季累积NDVI对气温的滞后期为1个月,对风速的滞后期为2个月,对地表温度的滞后期为4个月,而对降雨量和日照时数不存在滞后响应或者滞后期小于1个月。  相似文献   

2.
针对鄂尔多斯高原植被覆盖变化受干旱胁迫的状况,该文结合降水和气温的协同变化,以2000-2012年生长季的MODIS-NDVI数据和同期降水、温度和帕尔默干旱指数为依据,采用线性趋势分析、标准偏差分析和相关性分析等方法,对鄂尔多斯高原植被与气候变化的相关关系和干旱异常变化对植被动态的影响进行了研究.结果表明:鄂尔多斯高原生长季及季节(春季、夏季和秋季)植被归一化植被指数主要受降水的控制和干旱的制约,秋季归一化植被指数更多地受到夏季干旱的影响.与气象因子的空间相关分析表明,春季温度上升有利于研究区北部归一化植被指数像元的增加.在荒漠草原和沙漠地区,夏季干旱与归一化植被指数的相关关系最强.秋季降水对典型草原归一化植被指数的提升显著.  相似文献   

3.
基于MODIS-NDVI数据分析澜沧江流域生长季植被NDVI时空特征和变化趋势,结合地形数据、气象站点数据和植被类型数据,利用趋势分析和相关性分析法研究植被NDVI变化对气候因子的响应。结果表明:1)2000-2017年澜沧江流域生长季植被NDVI均值为0.592,整体呈现出由西北向东南波动增加趋势,增长速率为0.09%/10年;2) 2000-2017年澜沧江流域气温呈上升趋势,降水呈下降趋势,植被NDVII总体与平均气温的相关性高于累积降水量;3)澜沧江流域生长季植被NDVI驱动因子分析表明,气候驱动中以气温降水联合驱动为主,流域植被NDVI变化整体为非气候驱动。  相似文献   

4.
This study uses a multiple linear regression method to composite standard Normalized Difference Vegetation Index (NDVI) time series (1982-2009) consisting of three kinds of satellite NDVI data (AVHRR, SPOT, and MODIS). This dataset was combined with climate data and land cover maps to analyze growing season (June to September) NDVI trends in northeast Asia. In combination with climate zones, NDVI changes that are influenced by climate factors and land cover changes were also evaluated. This study revealed that the vegetation cover in the arid, western regions of northeast Asia is strongly influenced by precipitation, and with increasing precipitation, NDVI values become less influenced by precipitation. Spatial changes in the NDVI as influenced by temperature in this region are less obvious. Land cover dynamics also influence NDVI changes in different climate zones, especially for bare ground, cropland, and grassland. Future research should also incorporate higher-spatial-resolution data as well as other data types (such as greenhouse gas data) to further evaluate the mechanisms through which these factors interact.  相似文献   

5.
Climate dominantly controls vegetation over most regions at most times, and vegetation responses to climate change are often asymmetric with temporal effects. However, systematic analysis of the time-lag and time-accumulation effects of climate on vegetation growth, has rarely been conducted, in particular for different vegetation growing phases. Thus, this study aimed to leverage normalized difference vegetation index (NDVI) to determine the spatiotemporal patterns of climatic effects on global vegetation growth considering various scenarios of time-lag and/or accumulation effects. The results showed that (i) climatic factors have time-lag and -accumulation effects as well as their combined effects on global vegetation growth for the whole growing season and its subphases (i.e., the growing and senescent phases). However, these effects vary with climatic factors, vegetation types, and regions. Compared with those of temperature, both precipitation and solar radiation display more significant time-accumulation effects in the whole growing season worldwide, but behave differently in the growing and senescent phases in the middle-high latitudes of the Northern Hemisphere; (ii) compared to the scenario without time effects, considering time-lag and -accumulation effects as well as their combined effects increased by 17 %, 15 %, and 19 % the overall explanatory power of vegetation growth by climate change for the whole growing season, the growing phase, and senescent phase, respectively; (iii) considering the time-lag and -accumulation effects as well as their combined effects, climate change controls 70 % of areas with a significant NDVI variation from 1982 to 2015, and the primary driving factor was temperature, followed by solar radiation and precipitation. This study highlights the significant time-lag and -accumulation effects of climatic factors on global vegetation growth. We suggest that these effects need to be incorporated into dynamic vegetation models to better understand vegetation growth under accelerating climate change.  相似文献   

6.
基于MODIS-NDVI的内蒙古植被变化遥感监测   总被引:2,自引:0,他引:2  
本文利用2002-2006年5-8月的MODIS 1B数据,建立NDVI时间序列,并结合气象数据中的月均温、月降水量、滞后1月和滞后2月累计降水量对内蒙古地区植被生长季NDVI的月际、年际变化规律以及NDVI变化同气候因子的相关性进行了分析。结果表明:月际变化上,5-8月NDVI不断增加,NDVI变化率5-6月>6-7月>7-8月;年际变化上,2002-2006年间,草地的波动性最大;在与气候因子的相关性上:滞后2月降水>滞后1月降水>月均温>月降水量;对于林地和草地来说,各种相关系数高纬高于低纬,对于农耕地来说各种相关系数基本相当;对于沙地来说,各种相关系数均不高,这与其植被稀少且几乎无变化有关。  相似文献   

7.
A growing number of studies have focused on variations in vegetation phenology and their correlations with climatic factors. However, there has been little research on changes in spatial heterogeneity with respect to the end of the growing season (EGS) and on responses to climate change for alpine vegetation on the Qinghai–Tibetan Plateau (QTP). In this study, the satellite-derived normalized difference vegetation index (NDVI) and the meteorological record from 1982 to 2012 were used to characterize the spatial pattern of variations in the EGS and their relationship to temperature and precipitation on the QTP. Over the entire study period, the EGS displayed no statistically significant trend; however, there was a strong spatial heterogeneity throughout the plateau. Those areas showing a delaying trend in the EGS were mainly distributed in the eastern part of the plateau, whereas those showing an advancing trend were mostly scattered throughout the western part. Our results also showed that change in the vegetation EGS was more closely correlated with air temperature than with precipitation. Nonetheless, the temperature sensitivity of the vegetation EGS became lower as aridity increased, suggesting that precipitation is an important regulator of the response of the vegetation EGS to climate warming. These results indicate spatial differences in key environmental influences on the vegetation EGS that must be taken into account in current phenological models, which are largely driven by temperature.  相似文献   

8.
MODIS NDVI和AVHRR NDVI 对草原植被变化监测差异   总被引:5,自引:0,他引:5  
以草地作为研究载体,对比分析草原植被AVHRR NDVI和MODIS NDVI两种NDVI序列的年内、年际变化特征,讨论两种NDVI序列对降水量、平均气温和水汽压3种气候因子的响应差异,为合理选择NDVI序列对植被进行监测研究提供参考。结果表明:(1)两种NDVI序列所反映的草原植被年内变化趋势相似,但MODIS NDVI对各类草原的区分度优于AVHRR NDVI;(2)两种NDVI序列所反映的2000年—2003年草原植被年际变化差异明显。较之于MODIS NDVI,AVHRR NDVI变化趋势分类图表现出更强的植被改善趋势,植被改善面积在AVHRR NDVI变化趋势分类图中占94.25%,在MODIS NDVI中为83.33%;两种NDVI变化趋势分类图反映的植被变化趋势吻合度为52.88%。(3)两种NDVI序列与水汽压、降水量相关性差异显著。MODIS NDVI与各站点平均气温的相关系数均大于GIMMS NDVI;而MODIS NDVI与水汽压的相关系数83%(10个站点)小于GIMMS NDVI,与降水量的相关系数67%(8个站点)小于GIMMS NDVI。  相似文献   

9.
Northern Fennoscandia is an ecologically heterogeneous region in the arctic/alpine-boreal transition area. Phenology data on birch from 13 stations and 16-day MODIS-NDVI composite satellite data with 250 m resolution for the period 2000 to 2006 were used to map the growing season. A new combined pixel-specific NDVI threshold and decision rule-based mapping method was developed to determine the onset and end of the growing season. A moderately high correlation was found between NDVI data and birch phenology data. The earliest onset of the growing season is found in the narrow strip of lowland between the mountains and the sea along the coast of northern Norway. The onset follows a clear gradient from lowland to mountain corresponding to the decreasing temperature gradient. In autumn, the yellowing of the vegetation shows a more heterogeneous pattern. The length of the growing season is between 100 and 130 days in 55% of the study area.  相似文献   

10.
Moderate Resolution Imaging Spectroradiometer (MODIS) 16-day 1-km vegetation index products, daily temperature, photosynthetically active radiation (PAR), and precipitation from 2001 to 2004 were utilized to analyze the temporal variations of the MODIS normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), as well as their correlations with climate over the evergreen forested sites in Zhejiang-a humid subtropical region in the southeast of China. The results showed that both NDVI and EVI could discern the seasonal variation of the evergreen forests. Attributed to the sufficient precipitation in the study area, the growth of vegetation is mainly controlled by energy; as a result, NDVI, and especially EVI, is more correlated with temperature and PAR than precipitation. Compared with NDVI, EVI is more sensitive to climate condition and is a better indicator to study vegetation variations in the study region  相似文献   

11.
25年来秦岭NDVI指数的气候响应   总被引:1,自引:0,他引:1  
利用1982—2006年的植被指数和研究区域内4个气象站的气温、降水数据,研究陕西秦岭地区植被指数、气温、降水的多年变化趋势,分析植被指数与气温和降水的相关关系。利用植被类型数据分析不同植被种类的NDVI与不同气候因子的相关程度。结果表明,1982—2006年,研究区域年均气温有明显的上升,升幅达2.1℃,而年总降水量每10年下降约72 mm,秦岭地区NDVI略有上升。整体而言,植被指数的变化与气温之间的相关性在中部最大,向东西两侧递减;与降水之间的相关性在中部最小,向东西两侧递增。气温对果树园、经济林的影响最大,降水对阔叶林的影响最大。气温是影响该地区植被指数变化的主要因素。  相似文献   

12.
海河流域NDVI对气候变化的响应研究   总被引:6,自引:1,他引:5  
以海河流域为研究区,利用8 km分辨率AVHRR/NDVI数据和气象资料,逐像元对1981-2000年时段的流域NDVI值、年降水量和年均气温的变化率进行分析,计算了NDVI和年降水量、年均气温的相关关系.结果表明,1981-2000年时段内,海河流域年降水量变化总体呈现北部和南部增加,中部减少的趋势,其变化范围在-8...  相似文献   

13.
应用卫星与气象数据及其关系研究黄河流域的荒漠化现状   总被引:2,自引:0,他引:2  
本文应用20年(1981—2000年)的卫星数据反演归一化差值植被指数(NDVI),同时获取地面格网的温度与降雨数据,并分析这些数据之间的关系。基于地面的温度和降雨格网数据将研究区划分为8个气候区域,再利用NDVI数据把降雨量最少的3个气候区——区1,2,3各划分为10个等级。此外,分析这3个气候区在1983—1998年15年间的NDVI变化状况,结果显示出研究区荒漠化状况的加剧。  相似文献   

14.
太湖水生植被NDVI的时空变化特征分析   总被引:2,自引:0,他引:2  
为了明确太湖不同生态区水生植被长势的变化规律及其影响因子,利用MODIS传感器提供的NDVI数据,分析了太湖2000年—2015年NDVI的时间及空间变化特征。结果表明:太湖水生植被NDVI存在明显的季节变化和年际变化,NDVI每年最小值出现在冬季,最大值出现在植被生长旺盛的8月或9月,其值可达0.35;太湖全湖NDVI多年平均值为0.1,最大值为0.14,出现在2007年。太湖NDVI的空间差异可将太湖划分为不同的植被类型区,太湖西北部(竺山湾和梅梁湾)NDVI最大值可达0.2,植被类型主要以浮游藻类为主,东太湖区域最大值超过0.6,主要以沉水植被为主;太湖不同区域植被动态特征对气象因子的响应也不尽相同,沉水植物生长与平均气温有显著的正相关关系,而浮游植物区的生长状况受平均风速影响较大。  相似文献   

15.
中国陆地生态系统脆弱带遥感模型   总被引:4,自引:0,他引:4  
本研究通过对我国陆地生态系统8个典型样地的植被指数取样实验和图像计算结果发现,这8个样地植被指数随着水、热因子的季节变化,在时间和空间上具有一定的“绿波推移”和“景观更替”规律。在中国东部湿润的季风区(样地1-3),随着纬度的增高,其月平均植被指数与月平均气温有较大的相关。发现降水相对丰沛的地带,热量和光照条件的变化成为植被生长和变化的自然限制因子;而在中国北方森林-森林草原-典型昌原-荒漠草原-荒漠地带上,随着从东部(湿润地区)到西部(干旱地区)干湿条件的更替,月平均植被指数与降水多寡有较大的正相关关系。在8个样地上都呈现出共同的规律,即定向风的分布与植被指数的分布在时间和空间上具有逆相分布的“套合关系”。尤其在时间上有相逆套合关系,这正是中国北方沙尘暴和沙漠化加剧的自然原因。本研究定量地给出了我国陆地不同经纬度带生态系统脆弱季节和累积时间的分布。  相似文献   

16.
The climate of the United States Northern Great Plains region is highly variable. Modelling of agriculture in this region and similar locations depends on the availability and quality of satellite and ground data for agro-climate variables. We evaluated tropical rainfall measuring mission (TRMM) multi-satellite preparation analysis (TMPA) precipitation, atmospheric infrared sounder (AIRS) surface air temperature, and AIRS relative air humidity (RH). A significant bias was found within the temperature and RH products and no bias but an insufficient rain event detection skill in the precipitation product (probability of detection ~0.3). A linear correction of the temperature product removed the bias as well as lowered the root mean square deviation (RMSD). The bias-corrections for RH led to increased RMSD or worse correlation. For precipitation, the correlation between the satellite product and ground data improved if cumulative precipitation or only precipitation during the growing season was used.  相似文献   

17.
In this paper, we apply lagged correlation analysis to study the effects of vegetation cover on the summer climate in different zones of China, using NOAA/AVHRR normalized difference vegetation index (NDVI) data during the time period from 1982 to 2001 and climate data of 365 meteorological stations across China (precipitation from 1982 to 2001 and temperature from 1982 to 1998). The results show that there are positive correlations between spring NDVI and summer climate (temperature and precipitation) in most zones of China; these suggest that, when the vegetation cover increases, the summer precipitation will increase, and the lagged correlations show a significant difference between zones. The stronger correlations between NDVI in previous season and summer climate occur in three zones (Mid-temperate zone, Warm-temperate zone and Plateau climate zone), and this implies that vegetation changes have more sensitive feedback effects on climate in the three zones in China.  相似文献   

18.
Using satellite-observed Normalized Difference Vegetation Index (NDVI) data and Rotated Empirical Orthogonal Function (REOF) method, we analyzed the spatio-temporal variation of vegetation during growing seasons from May to September in the Three-River Source Region, alpine meadow in the Qinghai-Tibetan Plateau from 1982 to 2006. We found that NDVI in the centre and east of the region, where the vegetation cover is low, showed a consistent but slight increase before 2003 and remarkable increase in 2004 and 2005. Impact factors analysis indicted that among air temperature, precipitation, humid index, soil surface temperature, and soil temperature at 10 cm and 20 cm depth, annual variation of NDVI was highly positive correlated with the soil surface temperature of the period from March to July. Further analysis revealed that the correlation between the vegetation and temperature was insignificant before 1995, but statistically significant from 1995. The study indicates that temperature is the major controlling factor of vegetation change in the Three-River Source Region, and the currently increase of temperature may increase vegetation coverage and/or density in the area. In addition, ecological restoration project started from 2005 in Three-River Source Region has a certain role in promoting the recovery of vegetation.  相似文献   

19.
The purpose of this study is to estimate long-term SMC and find its relation with soil moisture (SM) of climate station in different depths and NDVI for the growing season. The study area is located in agricultural regions in the North of Mongolia. The Pearson’s correlation methodology was used in this study. We used MODIS and SPOT satellite data and 14 years data for precipitation, temperature and SMC of 38 climate stations. The estimated SMC from this methodology were compared with SM from climate data and NDVI. The estimated SMC was compared with SM of climate stations at a 10-cm depth (r2 = 0.58) and at a 50-cm depth (r2 = 0.38), respectively. From the analysis, it can be seen that the previous month’s SMC affects vegetation growth of the following month, especially from May to August. The methodology can be an advantageous indicator for taking further environmental analysis in the region.  相似文献   

20.
In this paper, we apply lagged correlation analysis to study the effects of vegetation cover on the summer climate in different zones of China, using NOAA/AVHRR normalized difference vegetation index (NDVI) data during the time period from 1982 to 2001 and climate data of 365 meteorological stations across China (precipitation from 1982 to 2001 and temperature from 1982 to 1998). The results show that there are positive correlations between spring NDVI and summer climate (temperature and precipitation) in most zones of China; these suggest that, when the vegetation cover increases, the summer precipitation will increase, and the lagged correlations show a significant difference between zones. The stronger correlations between NDVI in previous season and summer climate occur in three zones (Mid-temperate zone, Warm-temperate zone and Plateau climate zone), and this implies that vegetation changes have more sensitive feedback effects on climate in the three zones in China. Supported by the National 973 Program of China (No.2006CB701300), the National Natural Science Foundation of China (No.40721001), the Sino-Germany Joint Project (No. 2006DFB91920), the Open Fund of Shanghai Leading Academic Discipline Project (T0102) and the Open Fund of LIESMARS, Wuhan University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号