首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Pelitic and calcareous rocks in the Whetstone Lake area havean unusually wide range of chemical composition. Metamorphicreactions have been deduced that represent the observed ‘discontinuities’in compatible mineral assemblages, and by plotting the reactantand the product assemblage of each reaction on a map, metamorphicisograds have been delincated ‘from both sides’.For the pelitic rocks, successively higher-grade isograds arebased on the following reactions: (1)chlorite+muscovite+garnetstaurolite+biotite+quartz+water; (2) chlorite+muscovite+staurolite+quartz kyanite+biotite+water; (3) kyanitesillimanite; (4)staurolite+museovite+quartzsillimanite+garnet+biotite+water. A fifth isograd, based on the reaction (5) biotite+calcite+quartzCa-amphibole+K-feldspar+carbon dioxide+water intersects the isograds based on reactions (2), (3), and (4)in such a manner as to indicate that the H2O/CO2 fugacity ratiowas significantly higher in the vicinity of a granite plutonthan in the metasedimentary rocks remote from the pluton. Chemicalanalyses of the coexisting minerals in reaction (5) indicatethat the real reaction may involve plagioclase, epidote, sphene,and Fe-Ti oxides as well.  相似文献   

2.
The biotite isograd in pelitic schists of the Waterville Formationinvolved reaction of muscovite + ankerite + rutile + pyrite+graphite + siderite or calcite to form biotite + plagioclase+ ilmenite. There was no single reaction in all pelites; eachrock experienced a unique reaction depending on the mineralogyand proportions of minerals in the chlorite-zone equivalentfrom which it evolved. Quartz, chlorite, and pyrrhotite werereactants in some rocks and products in others. All inferredbiotite-forming reactions involved decarbonation and desulfidation;some were dehydration reactions and others were hydration reactions.P-T conditions at the biotite isograd were near 3500 bars and400 °C. C-O-H-S fluids in equilibrium with the pelitic rockswere close to binary CO2-H2O mixtures with XCO2 = 0.02–0.04.During the biotite-forming reaction, pelitic rocks (a) decreasedby 2–5 percent in volume, (b) performed – (4–11)kcal/liter P-V work on their surroundings, (c) absorbed 38–85kcal/liter heat from their surroundings, and (d) were infiltratedby at least 0.9–2.2 rock volumes H2O fluid. The biotite isograd sharply marks the limit of a decarbonationfront that passed through the terrane during regional metamorphism.Decarbonation converted meta-shales with 6–10 per centcarbonate to carbonate-free pelitic schists. One essential causeof the decarbonation event was pervasive infiltration of theterrane by at least 1–2 rock volumes H2O fluid early inthe metamorphic event under P-T conditions of the biotite isograd.Average shale contains 4–13 per cent siderite, ankerite,and/or calcite, but average pelitic schist is devoid of carbonateminerals. If the Waterville Formation serves as a general modelfor the metamorphism of pelitic rocks, it is likely that worldwidemany pelitic schists developed by decarbonation of shale caused,in part, by pervasive infiltration of metamorphic terranes byseveral rock volumes of aqueous fluid during an early stageof the metamorphic event.  相似文献   

3.
The unusual association of cordierite and cummingtonite (? gedrite+ chlorite + biotite + ilmenite + plagioclase + quartz) definesa metamorphic facies within aluminous, low-Ca amphibolites fromthe Proterozoic rocks of the Gold Brick District, east of Gunnison,Colorado. More Fe-rich bulk chemistries in the same facies arecharacterized by assemblages consisting of cordierite+-gedrite+ garnet + chlorite + biotite + ilmenite + plagioclase + quartz,whereas more Mg-rich compositions are characterized by cordierite+ anthophyllite + chlorite + biotite + ilmenite ? plagioclase+ quartz. The assemblage gedrite 4- cummingtonite + chlorite+ biotite + ilmenite + plagioclase + quartz was also observed.Coexisting cordierite+ anthophyllite + cummingtonite was notobserved in any rocks, apparently because this assemblage isstable over only a very narrow range of bulk compositions. Metamorphosedpelitic rocks are more iron rich than the assemblage cordierite+ gedrite + garnet + chlorite + biotite + ilmenite + plagioclase+ quartz and consist of garnet ?cordierite ?staurolite ? chlorite? andalusite + biotite + ilmenite + plagioclase + quartz? microclineor muscovite. Mineral rim compositions from cordierite-bearing amphibolitesand metapelites determined by electron microprobe analysis showsystematic Fe/Mg partitioning and define assemblages that occupynon-overlapping regions of the compositional system SiO2-TiO2-Al2O3-MnO-FeO-MgO-CaO-Na2O-K2O-H2Oas determined by algebraic and statistical methods developedby Braun & Stout (1975) and Fisher (1989). Graphical methods(projections) produced spurious overlaps not confirmed by themore rigorous algebraic tests. The spurious overlaps were generatedbecause standard projective analysis was not able simultaneouslyto account for the important effects of the components Na2O,CaO, and MnO on the AFM topologies. The results of algebraicand statistical analysis are consistent with an equilibriumorigin at constant values of temperature and pressure. The cordierite-cummingtonite facies encompasses the relativelylow-pressure and moderate-temperature conditions associatedwith the stability field of andalusite. Garnet-biotite geothermo-metry,and garnet, aluminosilicate, silica, plagioclase (GASP) geobarometrysuggest that temperatures and pressures were nearly constantacross the study area at 550( ? 70) ?C and 3 kb, respectively,near the peak of metamorphism. Other geothermometers and geobarometers,and independent pressure and temperature estimates, are compatiblewith garnet-biotite thermometry and GASP geo-barometry. Gradientsin fO2 or H2O are not required to explain the compatibilityof these assemblages at constant T and P. Cordierite + cummingtonite-bearingrocks can apparently be derived from anthophyllite +garnet-bearingrocks by increasing temperature or decreasing pressure.  相似文献   

4.
Talc-phengite, an assemblage hitherto believed to be rare, isfound in regional distribution in the Gran Paradiso area, whereit occurs in the characteristic mineral association chloritoid-talc-phengite(Si3·43·5). Talc contains up to 15 moleper cent minnesotaite, and chloritoid up to 45 mole per centof the magnesium end member. The talc-phengite stability resultsbasically from the disappearance of chlorite + quartz in rockswith low and moderate MgO/FeO ratios through the divariant reactionsfirst recognized here: Fe-Mg-Chlorite+quartz talc + garnet + H2O and Fe-Mg-chlorite + quartz talc + Chloritoid + H2O These reactions imply the disappearance of the join biotite-chloritein the presence of quartz and thus open a talc-phengite stabilityfield (±garnet or chloritoid or Mg-chlorite) which extends,with increasing P and T, toward Mg-richer compositions. Whetheror not it reaches the magnesian subsystem in the Gran Paradisoarea cannot be ascertained. However, the sporadic occurrenceof the high-pressure assemblage talc-kyanite-chloritoid 50 to70 km further northeast in the vicinity of the Monte Rosa massifwithin the same lithological unit (Zermatt-Saas Fee zone s.l.)indicates the instability of any chlorite in quartz-bearingrocks, and implies that talc-phengite must also be stable forpurely magnesian compositions in that area. This progressivestabilization of talc-phengite with increasing metamorphic gradesupports Abraham & Schreyer's (1976) hypothesis of a high-pressurefield for this assemblage, and rules out Chernosky's construction(1978) implying a low-pressure field. The following paragenetic sequence is proposed for pelitic compositionswith intermediate Mg/Fe ratios and excess quartz subjected tohigh-pressure metamorphism with maximum temperatures near 400–500°C: chlorite-illite chlorite-phengite chloritoid-talc-phengite.The absence of biotite is a compositional effect due to thehigh degree of phengite substitution in the white mica. *Present address: Institut fr Mineralogic, Ruhr-Universitt, Postfach 10 21 48, D-4630 Bochum 1, Federal Republic of Germany.  相似文献   

5.
Amphibolites of the Post Pond Volcanics, south-west corner ofthe Mt. Cube Quadrangle, Vermont, are characterized by a greatdiversity of bulk rock types that give rise to a wide varietyof low-variance mineral assemblges. Original rock types arebelieved to have been intrusive and extrusive volcanics, hydrothermallyaltered volcanics and volcanogenic sediments with or withoutadmixtures of sedimentary detritus. Metamorphism was of staurolite-kyanitegrade. Geothermometry yields a temperature of 535 ± 20°C at pressures of 5–6 kb. Partitioning of Fe and Mg between coexisting phases is systematic,indicating a close approach to chemical equilibrium was attained.Relative enrichment of Fe/Mg is garnet > staurolite >gedrite > anthophyllite cummingtonite hornblende > biotite> chlorite > wonesite > cordierite dolomite > talc;relative enrichment in Mn/Mg is garnet > dolomite > gedrite> staurolite cummingtonite > hornblende > anthophyllite> cordierite > biotite > wonesite > chlorite >talc. between coexisting amphiboles varies as a function ofbulk Fe/Mg, which is inconsistent with an ideal molecular solutionmodel for amphiboles. Mineral assemblages are conveniently divided into carbonate+ hornblende-bearing, hornblende-bearing (carbonate-absent)and hornblende-absent. The carbonate-bearing assemblages allcontain hornblende + dolomite+ calcite + plagioclase (andesineand/or anorthite) + quartz with the additional phases garnetand epidote (in Fe-rich rocks) and chlorite ± cummingtonite(in magnesian rocks). Carbonate-bearing assemblages are restrictedto the most calcic bulk compositions. Hornblende-bearing (carbonate absent) assemblages occur in rocksof lower CaO content than the carbonate-bearing assemblages.All of these assemblages contain hornblende + andesine ±quartz + Fe-Ti oxide (rutile in magnesian rocks and ilmenitein Fe-rich rocks). In rocks of low Al content, cummingtoniteand two orthoamphiboles (gedrite and anthophyllite) are common.In addition, garnet is found in Fe-rich rocks and chlorite isfound in Mg-rich rocks. Several samples were found that containhornblende + cummingtonite + gedrite + anthophyllite ±garnet +chlorite + andesine + quartz + Fe-Ti oxide ±biotite. Aluminous assemblages contain hornblende + staurolite+ garnet ± anorthite/bytownite (coexisting with andesine)± gedrite ± biotite ± chlorite ±andesine ± quartz ± ilmenite. Hornblende-absentassemblages are restricted to Mg-rich, Ca-poor bulk compositions.These rocks contain chlorite ± cordierite ± staurolite± talc ± gedrite ± anthophyllite ±cummingtonite ± garnet ± biotite ± rutile± quartz ± andesine. The actual assemblage observeddepends strongly on Fe/Mg, Ca/Na and Al/Al + Fe + Mg. The chemistry of these rocks can be represented, to a firstapproximation, by the model system SiO2–Al2O3–MgO–FeO–CaO–Na2O–H2O–CO2;graphical representation is thus achieved by projection fromquartz, andesine, H2O and CO2 into the tetrahedron Fe–Ca–Mg–Al.The volumes defined by compositions of coexisting phases filla large portion of this tetrahedron. In general, the distributionof these phase volumes is quite regular, although in detailthere are a large number of phase volumes that overlap otherphase volumes, especially with respect to Fe/Mg ratios. Algebraicand graphical analysis of numerous different assemblages indicatethat every one of the phase volumes should shift to more magnesiancompositions with decreasing µH2O. It is therefore suggestedthat the overlapping phase volumes are the result of differentassemblages having crystallized in equilibrium with differentvalues of µH2O or µCO2 and that the different valuesmay have been inherited from the original H2O and CO2 contentof the volcanic prototype. If true, this implies that eithera fluid phase was not present during metamorphism, or that fluidflow between rocks was very restricted.  相似文献   

6.
Within the western Sierra Nevada metamorphic belt, linear bodiesof alpine-type ultramafic rock, now composed largely of serpentineminerals, parallel the regional strike and commonly coincidewith major fault zones. Within this metamorphic belt, east ofSacramento, California, ultramafic rocks near a large maficintrusion, the Pine Hill Intrusive Complex, have been emplacedduring at least two separate episodes. Those ultramafic rocks,evidently unaffected by the Pine Hill Intrusive Complex andcomposed largely of serpentine minerals, were emplaced alonga major fault zone after emplacement of the Pine Hill IntrusiveComplex. Those ultramafic rocks, contact metamorphosed by thePine Hill Intrusive Complex, show a zonation of mineral assemblagesas the igneous contact is approached: olivine+antigorite+chlorite+tremolite+Fe-Cr spinel olivine+talc+chlorite+tremolite+Fe-Crspinel olivine+anthophyllite+chlorite+tremolite+Fe-Cr spinel olivine+orthopyroxene+aluminous spinel+hornblende+Fe-Cr spinel.Superimposed on these mineral assemblages are abundant secondaryminerals (serpentine minerals, talc, chlorite, magnetite) whichformed after contact metamorphism. Correlation of observed mineralassemblages with the experimental systems, MgO-SiO2-H2O andMgO-Al2O3-SiO2-H2O suggests an initial contact temperature of775±25 °C for the Pine Hill Intrusive Complex assumingPtotal Pfluid PH2O. The pressure acting on the metamorphic rockduring emplacement of the intrusion is estimated to be a minimumof 1.5 kb.  相似文献   

7.
Spinel granulites, with or without sapphirine, occur as lensesin garnetiferous quartzofeldspathic gneisses (leptynites) nearGokavaram in the Eastern Ghats Belt, India. Spinel granulitesare mineralogically heterogeneous and six mineral associationsoccur in closely spaced domains. These are (I) spinel–quartz–cordierite,(II) spinel–quartz–cordierite–garnet–orthopyroxene–sillimanite,(III) spinel–cordierite–orthopyroxene–sillimanite,(IV) spinel–quartz–sapphirine–sillimanite–garnet,(V) spinel–quartz-sapphirine–garnet and (IV) rhombohedral(Fe–Ti) oxide–cordierite–orthopyroxene–sillimanite.Common to all the associations are a porphyroblastic garnet(containing an internal schistosify defined by biotite, sillimaniteand quartz), perthite and plagioclase. Spinel contains variableamounts of exsolved magnetite and is distinctly Zn rich in thesapphirine-absent associations. XMg in the coexisting phasesdecreases in the order cordierite–biotite–sapphirine–orthopyroxene–spinel–garnet–(Fe–Ti)oxides. Textural criteria and compositional characteristicsof the phases document several retrograde mineral reactionswhich occurred subsequent to prograde dehydration melting reactionsinvolving biotite, sillimanite, quartz, plagioclase and spinel.The following retrograde mineral reactions are deduced: (1)spinel + quartz cordierite, (2) spinel + quartz garnet + sillimanite,(3) garnet + quartz cordierite + orthopyroxene, (4) garnet+ quartz + sillimanite cordierite, (5) spinel + cordierite orthopyroxene + sillimanite, (6) spinel + sillimanite + quartz sapphirine, (7) spinel + sapphirine + quartz garnet + sillimanite,and (8) spinel + quartz sapphirine + garnet. A partial petrogeneticgrid for the system FeO–MgO–Al2O3–SiO2–K2O–H2Oat high fo2, has been constructed and the effects of ZnO andFe2O3 on this grid have been explored Combining available experimentaland natural occurrence data, the high fo2 invariant points inthe partial grid have been located in P–T space. Geothermobarometricdata and consideration of the deduced mineral reactions in thepetrogenetic grid show that the spinel granulites evolved throughan anticlockwise P–T trajectory reaching peak metamorphicconditions >9 kbar and 950C, followed by near-isobaric cooling(dT/dP = 150C/kbar). This was superimposed by an event of near-isothermaldecompression (dT/dP = 15C/kbar). The studied spinel granulites,therefore, preserve relic prograde mineral associations andreaction textures despite being metamorphosed at very high temperatures,and bear evidence of polymetamorphism. KEY WORDS: spinel granulite; Eastern Ghats; India; polymetamorphism; geothermometry; geobarometry Corresponding author  相似文献   

8.
Metamorphism in the Adirondacks: II. The Role of Fluids   总被引:6,自引:2,他引:4  
Quantitative estimates of metamorphic fluid speciation, stableisotopic analyses, and studies of fluid inclusions all documentthe local complexity of fluids in the deep crustal rocks exposedin the Adirondack Mountains, NY. Estimates of the activity ofH2O in the granulite facies are substantially lower than inthe amphibolite facies gneisses. The onset of low water activitiesin semi-pelitic gneisses generally correlates with migmatitictextures in the uppermost amphibolite facies, suggesting thatpartial melts absorbed H2O at the peak of metamorphism. In granulitefacies marbles and calc-silicates, conditions varied from extremelyundersaturated in H2O-CO2 fluid to fluid saturated, and H2Oand CO2 show sharp gradients within single outcrops. Low valuesof fO2 and fH2O, or of fCO2, and fH2O indicate fluid-absentconditions for some orthogneisses and marbles, which are inferredto have been ‘dry’ rocks before and during granulitefacies recrystallization. Wollastonite is preserved from earlycontact metamorphism and serves as an index mineral for fluid-absentconditions in granulites where H2O is low. Values offO2 rangefrom near the hematite + magnetite buffer in metamorphosed ironformation to substantially below the quartz + magnetite + fayalitebuffer in some orthogneisses. The anorthosite suite is moreoxidized than some associated granitic gneisses. Halogens (Fand Cl) substitute extensively for OH in micas and amphiboles,extending their stability, although F2, Cl2, HCl, and HF areminor components in any fluid. Oxybiotite-type exchanges involvingO for OH are also important, extending the stability of biotite.Stable isotopic ratios of O and C demonstrate that premetamorphicwhole-rock compositions are commonly preserved whereas mineralcompositions generally reflect equilibration at the peak ofmetamorphism. The Marcy Anorthosite Massif was intruded as ahigh 18O magma. The combination of mineral equilibria, stable isotope data,and fluid inclusions is used to identify and to distinguishamong pre-orogenic contact metamorphic/hydrothermal events,peak metamorphic events, and retrograde/postmetamorphic events.Polymetamorphism is documented at skarn zones adjacent to anorthosite,where large volumes of hydrothermal fluid were channeled duringearly, shallow contact metamorphism and where conditions werefluid poor during subsequent regional metamorphism. Peak metamorphicevents are inferred to have been caused primarily by magmaticprocesses of intrusion and anatexis. Partial melting has causedlow values of H2O in many rocks, but in other cases low valuesof H2O are recorded in orthogneisses derived from H2O-poor magmas.Isotopic studies show that maximum fluid/rock ratios were <0?land possibly 0?0 for infiltrating fluids at the peak of metamorphismin many localities. No evidence of pervasive, regional infiltrationby a fluid at the peak of metamorphism has been substantiatedin the Adirondacks. Fluid inclusions containing high-densityCO2 or CO2 + H2O represent conditions from after the peak ofmetamorphism and document isobaric cooling, in agreement withestimates from garnet zoning. Fine-scale retrograde veins arecommon and are associated with high-density CO2-rich fluid inclusions.  相似文献   

9.
High-pressure, regional metamorphic rocks (the Raspas Formation)constitute an inclusion more than 10 km long and 3 km wide ina protrusion of extensively serpentinized harzburgite in ElOro Province, southwestern Ecuador. The high-pressure rocks,all feldspar-free, consist of a dominant pelitic schist withquartzite layers, eclogite, eclogite amphibolite, garnetite,and retrograde mafic rocks. The pelitic schist is coarse grainedand is composed of quartz + phengite + paragonite + garnet +chloritoid + rutile + graphite ± kyanite ± pyrite.Eclogite is fine to medium grained, massive to strongly foliated(average mode: omphacite (Jd42Ac6(Di + He)32), 38.2 per cent;garnet (Alm53 Spess2 Pyr19 Gross26), 26.6; barroisite (4.1 percent Na2O), 22.6; clinozoisite, 4.1; rutile, 2.1; quartz, 5.7;other minerals, 0.7).Eclogite amphibolite is a medium-grainedand massive to foliated rock composed of amphibole (3.1 percent Na2O) + garnet + zoisite + kyanite + rutile + pyrite ±omphacite± paragonite ± quartz ± apatite. Retrogrademafic rocks include glaucophane schist, greenschist, and coarse-grained,amphibole-rich rocks. Prograde metamorphism took place in an active Benioff zone.Based on phase relations in the pelitic schist, partitioningof Mg/(Mg + Fetotal + Mn) in garnet-amphibole and in omphacite-amphibolepairs (Dòbretsov et al., 1975), the absence of lawsonite,and other evidence, the conditions of metamorphism are estimatedto have been T = 580 ° ± 20 °C and P total =13 ± 3 kb (43 ± 10 km depth). P H2O ranged from P total in pelitic schist, through P total in eclogite amphibolitc,to «P total in eclogite. Retrograde metamorphism accompaniedrapid uplift of the Raspas Formation during which the rockspassed through the stability field of glaucophane-epidote schist,but not the stability field of lawsonite. The inclusion of high-pressure rocks was carried upward intactin a protrusion of extensively serpentinized harzburgite whichrose diapirically through the relatively denser amphiboliteand greenschist which constitute the regional basement of ElOro Province. Serpentinization of harzburgite began at depth,and continued coevally with eclogitization. Protrusive riseoccurred upon abandonment of the Benioff zone. Radiometric K-Arages on the uplift of the Raspas Formation and the youngestlavas of a volcanic are of Jurassic-Early Cretaceous age ineastern Ecuador are synchronous (132 m.y.). Present address: Département de Géologie, Université Laval, Québec, P. Q. G1K 7P4 Canada  相似文献   

10.
The results of recent investigations on the stability limitsof staurolite have been combined together with those of thepresent study to develop a semi-quantitative model of the P–T–fo2–Xrelations of staurolite±quartz±magnetite. Theproblem with respect to the hydroxyl content of staurolite hasbeen analysed; it is concluded that no evidence has yet beenmustered to discount the idealised stoichiometry proposed byNaray-Szabó & Sasvari (1958), at least as a limitingcomposition. The stability limits of staurolite±magnetitehave been calculated from the experimental data for the equilibriainvolving quartz. Also the conditions over which the assemblagecordierite+magnetite+quartz could be stable, as well as a quantitativemodel for the fo2-P stability of almandine ± quartz havebeen deduced theoretically. An analysis is presented of the paragenetic relations of staurolitein common pelitic schists. It is suggested that the formationof staurolite at the expense of either chloritoid or chlorite,rather than the unqualified first appearance of staurolite asproposed by Winkler (1970), should define a ‘staurolite-in’isograd in the range of 500–575 °C. In regional metamorphism,chloritoid, staurolite, and aluminum silicates should, underequilibrium conditions, be unstable relative to almandine ingraphitic pelitic schists involving magnetite (chloritoid/staurolite/Al2SiO6+magnetite+quartzalmandine+O2+H2O).The limits of P-T conditions over which staurolite and cordieritemay coexist in natural assemblages have been deduced; it isrestricted, almost entirely within the field of andalusite,between 500–700 °C, and 2–6 kbars, thus definingthe range of P-T conditions for the ‘low-pressure intermediate’—or ‘Buchan’–type amphibolite facies discussedby Miyashiro (1961). In assemblages involving staurolite andandalusite, cordierite rather than almandine should usuallybe stable; the reverse holds for assemblages involving stauroliteand sillimanite.  相似文献   

11.
Proterozoic migmatitic paragneisses exposed in the McCulloughRange, southern Nevada, consist of cordierite+almanditic garnet+biotite+sillimanite+plagioclase+K-feldspar+quartz+ilmenite+hercynite.This assemblage is indicative of a low-pressure fades seriesat hornblende-granulite grade. Textures record a single metamorphicevent involving crystallization of cordierite at the expenseof biotite and sillimanite. Thermobarometry utilizing cation exchange between garnet, biotite,cordierite, hercynite, and plagioclase yields a preferred temperaturerange of 590–750?C and a pressure range of 3–4 kb.Equilibrium among biotite, sillimanite, quartz, garnet, andK-feldspar records aH2O between 0?03 and 0?26. The low aH2Otogetherwith low fO2 (QFM) and optical properties of cordierite indicatemetamorphism under fluid-absent conditions. Preserved mineralcompositions are not consistent with equilibrium with a meltphase. Earlier limited partial melting was apparently extensiveenough to cause desiccation of the pelitic assemblage. The relatively low pressures attending high-grade metamorphismof the McCullough Range paragneisses allies this terrane withbiotite-cordierite-garnet granulites in other orogenic belts.aosure pressures and temperatures require a transient apparentthermal gradient ofat least 50?C/km during part of this Proterozoicevent in the southern Cordillera. *Present address: Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90024-1567  相似文献   

12.
Experimental Crystallization of Leucogranite Magmas   总被引:25,自引:8,他引:17  
Both crystallization and melting experiments have been carriedout on two natural, biotite-muscovite (DK) and tourmaline-muscovite(GB) High Himalayan leucogranites (HHL) at 4 kbar, logfO2 =FMQ–05, aH2O = 1–0•03, and at five temperaturesbetween 803 and 663C H2O contents of the quenched glasses wereanalysed by ion microprobe. Plagioclase and biotite are theliquidus phases for reduced melt H2O contents and H2O-rich conditions,respectively. H2O saturation limits range from 8 to 10 wt%.DK has a wider crystallization interval than GB (150 vs 80Cfor conditions close to H2O saturation), and a slightly higherH2O-saturated solidus (645 compared with 630C for GB). Tourmalinenever crystallized spontaneously from the melt. Tourmaline seedsalways reacted out to biotite in the biotite-muscovite sample,whereas they remained stable in the tourmaline-muscovite sample.Biotite is replaced by hercynite as the main ferromagnesianphase at high temperature and reduced aH2O. Muscovite crystallizationis restricted to near-solidus conditions. The compositions ofplagioclase, alkali feldspar, biotite and muscovite are givenas a function of bulk composition, temperature and aH2O. Glasscompositions are richer in normative quartz than the 4 kbarH2O-saturated Qz–Ab–Or eutectic, and become moreperaluminous and less mafic with increasing fractionation. Biotitecrystallization in peraluminous liquids is favoured by elevatedFe, Mg and Ti contents. Muscovite crystallization is not promotedunder H2O-saturated conditions. Tourmaline stability is stronglydependent on aH2O. For GB, tourmaline is present at elevatedtemperatures for intermediate values of aH2O (803 C, 0–7),but not above 650C for H2O-saturated conditions. Comparisonof the natural crystallization sequence with experiments suggestsinitial water contents between 5 and 75 wt % for the DK magma,and > 7 wt% for the GB magma. Plagioclase core compositionsgive minimum temperatures of 700C for GB and 750C for DK,consistent with an emplacement of these HHL as almost entirelyliquid bodies. The restricted occurrence of biotite in the GBgranite suggests that it reacted out during the magmatic evolution,owing to a marked change in fO2 toward more oxidizing conditions.Tourmaline leucogranites can be generated from biotite leucogranitesby fractional crystallization under conditions of increasingdegree of oxidation. KEY WORDS: leucogranite; melting experiments; crystlization experiments; Himalayas; phase relations *Corresponding author  相似文献   

13.
The Aravalli–Delhi Mobile Belt in the northwestern partof India demonstrates how granulite enclaves and their hostgneisses can be utilized to unravel multistage metamorphic historiesof orogenic belts, using three suites of metamorphic rocks:(1) an enclave of pelitic migmatite gneiss–leptynite gneiss;(2) metamorphosed megacrystic granitoids, intrusive into theenclave; (3) host tonalite–trondhjemite–granodiorite(TTG) gneisses associated with an interlayered sequence of garnetiferousmetabasite and psammo-pelitic schist, locally migmatitic. Basedon integrated structural, petrographic, mineral compositional,geothermobarometric studies and P–T pseudosection modellingin the systems NCKFMASH and NCFMASH, we record three distincttectonothermal events: an older, medium-pressure granulite-faciesmetamorphic event (M1) in the sillimanite stability field, whichis registered only in the enclave, a younger, kyanite-gradehigh-pressure granulite-facies event (M2), common to all thethree litho-associations, and a terminal amphibolite-faciesmetamorphic overprint (M3). The high-P granulite facies eventhas a clockwise P–T loop with a well-constrained prograde,peak (M2, P 12–15 kbar, T 815°C) and retrograde (M2R,6·1 kbar, T 625°C) metamorphic history. M3 is recordedparticularly in late shear zones. When collated with availablegeochronological data, the metamorphic P–T conditionsprovide the first constraint of crustal thickening in this belt,leading to the amalgamation of two crustal blocks during a collisionalorogeny of possible Early Mesoproterozoic age. M3 reactivationis inferred to be of Grenvillian age. KEY WORDS: Northwestern India; polycyclic granulite enclave; pseudosection; high-pressure metamorphism; P–T path  相似文献   

14.
Two types of biotite isograd are defined in the low-grade metamorphism of the Wazuka area, a Ryoke metamorphic terrain in the Kii Peninsula, Japan. The first, BI1, is defined by the reaction of chlorite+K-feldspar= biotite+muscovite+quartz+H2O that took place in psammitic rocks, and the second, BI2, by the continuous reaction between muscovite, chlorite, biotite and quartz in pelitic rocks. The Fe/Mg ratios of the host rocks do not significantly affect the reactions. From the paragenesis of pelitic and psammitic metamorphic rocks, the following mineral zones were established for this low-pressure regional metamorphic terrain: chlorite, transitional, chlorite-biotite, biotite, and sillimanite. The celadonite content of muscovite solid solution in pelitic rocks decreases systematically with the grade of metamorphism from 38% in the chlorite zone to 11% in the biotite zone. Low pressure does not prohibit muscovite from showing the progressive change of composition, if only rocks with appropriate paragenesis are chosen. A qualitative phase diagram of the AKF system relevant to biotite formation suggests that the higher the pressure of metamorphism, the higher the celadonite content of muscovite at BI1, which is confirmed by comparing the muscovites from the Barrovian and Ryoke metamorphism.  相似文献   

15.
Thermodynamic calculations based on addition of mass balanceequations to the Gibbs Method (Spear, 1986) are used to modelthe cordierite-producing reaction in pelitic gneiss from theMcCullough Range, southern Nevada. Calculations which treatthe model paragenesis as a system open to transfer of H2O areconsistent with textural relations. Results indicate that cordieritegrew by the continuous net-transfer reaction: 0?76 BIO+1?72 SILL+3? 55 QTZ+0?27 PLG+0?005 GRT +0?06Al2R2+–1Si–1[BIO]1?02 KSP+0?76 H2O +0?30 FeMg–1[CRD]+0?15FeMg–1[BIO]+0?0005 FeMg–1[GRT] +0?005 CaNaAl–1Si–1[PLG] with decreasing P, decreasing T, and increasing aH2O The steepretrograde dP/dT path for these low-pressure granulites contrastswith isobaric cooling paths typical of higher pressure granulites,and suggests uplift and erosion were active during Proterozoicgranulite-grade metamorphism in this area.  相似文献   

16.
The Kelly's Mountain gneiss complex of Cape Breton Island, Nova Scotia, is a migmatitic paragneiss dominated by biotite- and cordierite-bearing assemblages. Metamorphic grade throughout the complex is in the upper amphibolite facies, with garnet absent and only retrograde muscovite present. In the high grade core of the complex the reaction biotite+andalusite+quartz=cordierite+K-feldspar+sillimanite+ilmenite+H2O is preserved. The pelitic migmatites contain cordierite- and K-feldspar-rich leucosomes and biotite-rich melanosomes. Minor clinopyroxene-bearing amphibolite in the complex does not show migmatitic textures. The migmatites are interpreted as in situ peraluminous partial melts on the basis of phase relations and textural criteria. Retrograde metamorphism under conditions of high fluid pressure locally produced muscovite after K-feldspar and muscovite+green biotite+chlorite after cordierite in paragneiss, and sphene after ilmenite in amphibolite. Peak metamorphic conditions of 1–3.5 kb and 580–700° C are estimated. The high geothermal gradient inferred from these conditions was probably caused by the intrusion of diorites associated with the gneiss complex. The Kelly's Mountain complex represents a rare example of migmatites formed in the low-pressure facies series, and illustrates some of the reactions involving melting in high grade pelitic rocks.  相似文献   

17.
FERRY  JOHN M. 《Journal of Petrology》1988,29(6):1121-1159
Mineral reactions at the biotite isograd were investigated inpelitic schists, micaceous sandstones, micaceous limestones,and metaigneous rocks from three stratigraphic units over anarea of 10000 km2 in north-central New England. The biotiteisograd in north-central New England represents a metamorphicdecarbonation front that affected all major rock types in eachstratigraphic unit. Pressure at the isograd was near 3500 bat the northern end of the study area and near 5500 b in thesouth. Temperature was in the range 400–450?C. Equilibriummetamorphic fluids were approximately CO2-H2O mixtures withXCO2=0?04–0?07. Volumetric fluid]-rock ratios were calculatedfor more than 70 samples of all major rock types from each formationusing measured progress of the prograde reactions and the estimatedP-T-XCO2, conditions of metamorphism. Regardless of stratigraphicunit, limestones record low values of 0–0?2, pelites andmetaigneous rocks generally record high values of 1–3,and standstones record intermediate values of 0?2–1. With exception of the limestones, all samples from the biotitezone record fluid-rock ratios significantly greater than likelyrock porosity during metamorphism. The prograde decarbonationreactions therefore were driven by infiltration of rock by reactiveaqueous fluids. The observed correlations between fluid-rockratio and rock type indicate that significant permeability contrastsoccurred during low-grade metamorphsim with permeability increasingin the order: limestones<sandstones<pelites rocks. Asa corollary, reactive fluid flow must have been channelizedwith enhanced flow in pelites and metaigneous rocks relativeto sandstones and limestones. Results of this study in north-centralNew England taken together with studies of the biotite isogradin south-central Maine (Ferry, 1984, 1986a, 1988) demonstratethat low-grade metamorphism over much of the northern Appalachianorogen was infiltration-driven.  相似文献   

18.
The Ross of Mull pluton consists of granites and granodioritesand intrudes sediments previously metamorphosed at amphibolitefacies. The high grade and coarse grain size of the protolithis responsible for a high degree of disequilibrium in many partsof the aureole and for some unusual textures. A band of metapelitecontained coarse garnet, biotite and kyanite prior to intrusion,and developed a sequence of textures towards the pluton. InZone I, garnet is rimmed by cordierite and new biotite. In ZoneII, coarse kyanite grains are partly replaced by andalusite,indicating incomplete reaction. Coronas of cordierite + muscovitearound kyanite are due to reaction with biotite. In the higher-gradeparts of this zone there is complete replacement of kyaniteand/or andalusite by muscovite and cordierite. Cordierite chemistryindicates that in Zone II the stable AFM assemblage (not attained)would have been cordierite + biotite + muscovite, without andalusite.The observed andalusite is therefore metastable. Garnet is unstablein Zone II, with regional garnets breaking down to cordierite,new biotite and plagioclase. In Zone III this breakdown is welladvanced, and this zone marks the appearance of fibrolite andK-feldspar in the groundmass as a result of muscovite breakdown.Zone IV shows garnet with cordierite, biotite, sillimanite,K-feldspar and quartz. Some garnets are armoured by cordieriteand are inferred to be relics. Others are euhedral with Mn-richcores. For these, the reaction biotite + sillimanite + quartz garnet + cordierite + K-feldspar + melt is inferred. Usinga petrogenetic grid based on the work of Pattison and Harte,pressure is estimated at 3·2 kbar, and temperature atthe Zone II–III boundary at 650°C and in Zone IV asat least 750°C. KEY WORDS: contact metamorphism; disequilibrium  相似文献   

19.
Sapphirine occurs with humite-group minerals and forsteritein Precambrian amphibole-facies rocks at Kuhi-lal, SW PamirMountains, Tajikistan, a locality also for talc+kyanite magnesiohornblendewhiteschist. Most of these sapphirine-bearing rocks are graphiticand sulfidic (pyrite and pyrrhotite) and contain enstatite,clinohumite or chondrodite, spinel, rutile, gedrite, and phlogopite.A phlogopite schist has the assemblage with XFe = Fe/(Fe+Mg)increasing as follows: chlorite (0-003)<phlogopite (0.004–0.005)sapphirine (0.004–0.006) enstatite (0-006)forsterite (0-006–0-007)<spinel (0-014). This assemblage includes the incompatiblepair sapphirine+forsterite, but there is no textural evidencefor reaction. In one rock with clinohumite, XFe increases asfollows: clinohumite (0-002) <sapphirine (0-003) <enstatite(0-004–0-006) <spinel (0-010). Ion microprobe and wet-chemicalanalyses give 0-57–0-73 wt.% F in phlogopite and 0-27wt.% F in chlorite in the phlogopite schist; 0-04, 1.5–1.9,and 4.4 wt.% F in forsterite, clinohumite, and chondrodite,respectively; and 0-0-09 wt.% BeO and 0-05–0-21 wt.% B2O3in sapphirine. Stabilization of sapphirine+clinohumite or sapphirine+chondroditeinstead of sapphirine+phlogopite is possible at high F contentsin K-poor rocks, but minor element contents appear to be toolow to stabilize sapphirine as an additional phase with forsterite+enstatite+spinel.Although sapphirine+forsterite is metastable relative to spinel+enstatitein experiments conducted at aH2O=1 in the MgO-Al2O3-SiO2-H2Osystem, it might be stabilized at aH2O0.5, P4 kbar, T650–700C.Textures in the Kuhi-lal whiteschists suggest a polymetamorphicevolution in which the rocks were originally metamorphosed atT650C, P 7 kbar, conditions under which sapphirine+clinohumiteand sapphirine+chondrodite are inferred to have formed, andsubsequently affected by a later event at lower P, similar T,and lower aH2O. The latter conditions were favorable for sapphirine+forsteriteto form in a rock originally containing chlorite+forsterite+spinel+enstatite.  相似文献   

20.
The melting relations of two proposed crustal source compositionsfor rhyolitic magmas of the Taupo Volcanic Zone (TVZ), New Zealand,have been studied in a piston-cylinder apparatus at 10 kb totalpressure and a range of water activities generated by H2O-CO2vapour. Starting materials were glasses of intermediate composition(65 wt.% Si02 representing a metaluminous ‘I-type’dacite and a peraluminous ‘S-type’ greywacke. Crystallizationexperiments were carried out over the temperature range 675to 975?C, with aH2O values of approximately 1?0, 0?75, 0?5,and 0?25. Talc-pyrex furnace assemblies imposed oxygen fugacitiesclose to quartz-fayalite-magnetite buffer conditions. Assemblages in both compositions remain saturated with quartzand plagioclase through 675–700?C at high aH2O, 725–750?Cat aH2O0?5, and 800–875?C at aH2O0?25, corresponding to<60–70% melting. Concentrations of refractory mineralcomponents (Fe, Mg, Mn, P, Ti) in liquids increase throughoutthis melting interval with increasing temperature and decreasingaH2O. Biotite and hornblende are the only mafic phases presentnear the solidus in the dacite, compared with biotite, garnet,gedritic orthoamphibole, and tschermakitic clinoamphibole inthe greywacke. Near-solidus melting reactions are of the type:biotite + quartz + plagioclase = amphibole ? garnet, potentiallyreleasing H2O for dehydration melting in the greywacke, butproducing larger amounts of hornblende and releasing littleH2O in the dacite. At aH2O0?25 and temperatures 825–850?C,amphibole dehydration produces anhydrous mineral phases typicalof granulite fades assemblages (clinopyroxene, orthopyroxene,plagioclase?quartz in the dacite; garnet, orthopyroxene, plagioclase?quartzin the greywacke) coexisting with melt proportions as low as40%. Hornblendce-saturated liquids in the dacite are weaklyperaluminous (0?3–1?6 wt.% normative C—within therange of peraluminous TVZ rhyolites), whereas, at aH2O0?25 andtemperatures 925?C, metaluminous partial melt compositions (upto 1?8 wt.% normative Di) coexist with plagioclase, orthopyroxene,and clinopyroxene. At all water activities, partial melts ofthe greywacke are uniformly more peraluminous (1?5–2?6wt.% normative C), reflecting their saturation in the componentsof more aluminous mafic minerals, particularly garnet and Al-richorthopyroxene. A metaluminous source for the predominantly Di-normativeTVZ rhyolites is therefore indicated. With decreasing aH2O the stability fields of plagioclase andquartz expand, whereas that of biotite contracts. These changesare reflected in the proportions of normative salic componentsin partial melts of both the dacite and greywacke. At high aH2O,partial melts are rich in An and Ab and poor in Or (trondhjemitic-tonalitic);with decreasing aH2O they become notably poorer in An and richerin Or (granodioritic-granitic). These systematic variationsin salic components observed in experimental metaluminous tostrongly peraluminous melts demonstrate that a wide varietyof granitoid magmas may be produced from similar source rocksdepending upon P-T-aH2O conditions attending partial melting.Some peraluminous granitoids, notably trondhjemitic leucosomesin migmatites, and sodic granodiorites and granites emplacedat deep crustal levels, have bulk compositions similar to nearsolidus melt compositions in both the dacite and greywacke,indicating possible derivation by anatexis without the involvementof a significant restite component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号