首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李凤云 《气象》2001,27(4):1-1
按《地面气象观测规范》规定 ,冬季降雪时 ,须将雨量器内漏斗拧下 ,取走储水瓶 ,直接用承水器和雨量筒容纳降水。而对降水的测量方法有两种 :即称量法与杯量法。所谓杯量法即为将盛有固态降水物的储水瓶用备用储水瓶换下 ,取回室内待固态降水物融化后 ,用量杯量取 ;或加入定量的温水 ,使固态降水物完全融化 ,再用量杯量取。经过多年的实践我发现用此法测量的降水量偏小 ,有时倒出来的水还不如加进去的温水多 ,即降水量为负值 ,其原因是雨量筒内表面积大 ,对水的粘连性较大。所谓称量法是将固态降水物连同储水筒一起拿到台称上进行称量 ,称量…  相似文献   

2.
1 《汇编》(省局1981年10月发)115条规定:“如遇20时降水观测后,在蒸发观测前有降水,无蒸发专用雨量器的台站,应进行一次补测,以便计算蒸发量。”我们知道,在降水量取中,同样的降水量若分多次量取,因为储水瓶的吸附和读数误差等原因,使降水比实际偏多或偏少,而以偏少居多,这样人为地增加量降水次数,会造成一定误差。实际上,在降水观测后至蒸发观测前的这段时间里,仅仅几分钟蒸发往往并不大。所以笔者认为,将降水观测与蒸发观测(20时)同时进行更为妥当。也就是说在降水观测的同时将蒸发器也用备用仪器量…  相似文献   

3.
陈庆平 《气象》2001,27(10):12-12
现行地面气象观测中 ,量取蒸发和降水所使用的量杯一次只可量取 1 0mm ,这在实际工作中很不方便。如在无降水的时侯 ,量蒸发原量、余量时 ,需要量两次 ;若有 30mm以上的降水 ,量降水至少需要 4次 ,量蒸发余量至少需要 6次。这样不仅浪费了观测时的宝贵时间 ,而且增大观测误差 ,同时量取时往往凭记忆累加 ,容易造成累加错误 ,影响观测质量。根据本人多年观测实践 ,在地面气象观测中增配 2 5mm容量的量杯比较合适。如在无降水的时候 ,量蒸发原量、余量一次就可以完成 ;如出现 50mm以内的降水 ,量蒸发原量、余量及降水量 ,只需三次以内…  相似文献   

4.
气象观测历年来注重气象记录的代表性、准确性、比较性。而要获取有“三性”的气象资料,取决于观测环境、仪器精度、安装及测量方法和正确操作等诸多因素。而当观测环境、仪器精度、安装及测量操作等一致时,我们发现还和仪器的材料、构造有着密切的关系。例如:我站在1990年以前因只有一只蒸发器,20时量蒸发如果遇有降水,则在取回蒸发皿的同时将配合蒸发用雨量筒加盖停用,并量取降水量,待放回蒸发皿后才使用。这样配合蒸发用雨量筒内的降水量,往往小于定时观测降水量,这是正常现象。在1990年后我组增加了一只备份用蒸发皿,  相似文献   

5.
由于配合蒸发雨量筒和降水雨量筒放置的位置不同 ,受大风等因素的影响 ,降水量有时稍有偏差也属正常。但是 ,最近几年在无风和降水平稳的时候 ,笔者做过多次比较 ,发现差值偏大。其主要原因是新的蒸发雨量筒漏水所致 ,虽经多次修补 ,效果仍不佳。因此 ,建议厂家不要被经济利益所驱动 ,应以气象事业发展为重 ,生产出合格的气象仪器配合蒸发与降水误差的原因@李传兵$方城县气象局!河南方城473200  相似文献   

6.
由于配合蒸发雨量筒和降水雨量筒放置的位置不同,受大风等因素的影响,降水量有时稍有偏差也属正常.  相似文献   

7.
称重与人工观测降水量的差异   总被引:1,自引:1,他引:0       下载免费PDF全文
为了更好地使用降水观测数据,对引起称重观测和人工观测的差异原因进行分析,选取北京市15个国家级地面观测站2012年11月—2014年1月称重式降水传感器与人工观测降水量业务资料,探讨称重观测与人工观测累积降水量的差异,并细化为对固态降水和液态降水两种降水类型进行相关性研究。结果表明:称重观测与人工观测日降水量相关系数为0.9990, 88.0%的对比次数中, 两者日降水量差值满足业务要求;在出现固态降水时,称重观测较人工观测降水量偏大,在出现液态降水时,称重观测较人工观测降水量偏小;两者在日降水量等级判断差异较小,小量降水时称重观测的能力较优;防风圈可显著提高称重观测固态降水的捕捉率,而称重观测内筒蒸发对夏季降水测量有一定影响。  相似文献   

8.
安康水库蓄水前后上游气候变化特征   总被引:2,自引:0,他引:2  
王娜  孙娴  蔡新玲  王琦 《气象科技》2010,38(5):649-654
利用陕西省安康水库上游气象站点的月及日降水、气温、蒸发等气候资料,分析了安康水库蓄水前后上游流域气候变化特征。分析结果表明,年降水量呈逐年代减少趋势,年平均温度呈增暖趋势,年蒸散量呈减少趋势;蓄水后年及主汛期降水量、雨日、暴雨日数、极端强降水概率、蒸散量均比蓄水前减少,平均气温比蓄水前升高,其中冬季升温幅度最大;主汛期和年降水量、平均气温蓄水前后差异显著,冬季蒸散量蓄水前后差异显著。近45年来汉江径流量呈下降趋势,降水对径流影响显著。  相似文献   

9.
本文用实例分析比较了在降水概率预报中微量降水时预报量取不同数值的不同预报效果,得出了“最佳”数值,并与公式推导计算的结论相一致。如在样本中剔除微量降水个例,可提高方程对晴、雨天气的判别能力。在降水概率预报(以下称 POP)中,如何处理微量降水,是一个较为突出的问题。如果当降水量 RR=0时,取 y=0,当 RR≥0.1时,取 y=1,而当 RR=0.0时,(记 y 为 y_(0.0))y 取作0或1似均欠妥。如下节图1所示,问题可归结为 y_(0.0)取何值,才能使回归方程(?)=b_0+b_1x 对整个样本配合得更好。李法然等指出微量降水时的环流特征介于晴、雨之间,就多数因子的状况看,它们更接近于晴天的情况,因而把 y_(0.0)取为0.4,即略偏于晴天一侧。这种处理从预报实践经验出发,取得了较好的效果。本文就此作进一步的讨论。  相似文献   

10.
沿用了几十年的雨量筒,在实际观测中发现其在设计上存在一定缺陷,致使在量取降水量时将承水器取下、储水瓶取出再放回的过程中,若遇降水就会出现误差,且降水越大误差就越大。该文就解决这一问题提出了一点改进意见。  相似文献   

11.
马耀 《河南气象》2002,(4):27-27
强降水天气出现时 ,很容易造成蒸发失真。其主要原因 :一是值班人员未能及时从蒸发器中取出相应数量的降水 ,造成蒸发器中雨水外溢 ;二是由于降水较猛 ,从蒸发器中向外溅出一定数量的降水 ,造成蒸发器中的降水比实际减少 ,导致“蒸发”比实际增大 (即蒸发失真 )。因此 ,在强降水天气出现时 ,一定要注意蒸发器中的水量 ,尽可能避免蒸发失真现象的发生强降水导致蒸发失真的原因@马耀$舞阳县气象局!河南舞阳462400  相似文献   

12.
蒸发量失真及预防措施何卫新(大新县气象局532300)现用小型蒸发器口缘侧面有一条凸边,就是未注意清除凸边上的积水造成的。其作用是托住金属网圈。这种结构的缺陷是:为此,拟采取如下两条措施:一下雨时凸边上易积水。根据观测,积水约为第一,值班员在量取蒸发...  相似文献   

13.
山东省降水量与不同强度降水日数变化对干旱的影响   总被引:10,自引:0,他引:10  
采用山东省82个地面气象站1961~2004年日降水量,统计了历年的降水量、不同强度降水日数;利用累积距平及t检验法分析了干旱受灾面积、降水量和不同强度降水日数的长期变化趋势并进行了突变检验,相关分析方法研究了干旱气象灾害对降水量和不同强度降水日数变化的响应。结果表明:干旱受灾面积、年降水量及中等强度以上降水日数的转折年大都出现在1976年,微量降水日数、0.1~4.9 mm/d降水日数及总雨日数的转折年出现在1988年全球气候变暖背景下,转折年后年降水量及不同强度的雨日数异常偏少年份频繁出现;干旱受灾面积与降水量和不同强度降水日数呈显著的负相关,降水量或不同强度的降水日数异常偏少都将导致干旱的发生。20世纪70年代中期以后随着全球气候变暖,降水量和5.0~99.9 mm/d以上降水日数异常偏少年份增多是极端干旱气候事件频繁发生、干旱面积扩大的最主要原因。  相似文献   

14.
本溪53 a降水特征与水资源分析   总被引:6,自引:3,他引:3  
吉奇  吴英杰  孟庆祥 《气象科学》2009,29(3):390-393
利用本溪1953--2005年月平均气温、降水量资料,依据高桥浩一郎的陆面实际蒸发经验公式,计算出陆面蒸发、蒸发系数和可利用降水系数,得出本溪水资源的变化特征与降水变化特征基本相似。降水量年际变化大,季节分配不均,总体呈下降趋势;春季蒸发损失量大,是易出现干旱的季节;提出缓解和解决水资源缺乏的建议,人工影响天气增加降水量、开源节流节约用水、水污染治理和水土流失控制。  相似文献   

15.
利用长江源区5个气象站46a的地面降水和高空露点资料,分析了该地区降水和高空水汽含量的变化特征。结果表明:近46a来,长江源区不同雨量等级的雨日和雨日平均雨量在夏半年呈减少趋势,冬半年呈明显增多趋势,降水集中,降水强度增大;年际间降水量不稳定,年变化趋势不明显;夏、秋季降水量变化呈微弱减少趋势,而冬、春季降水量呈增加趋势,其中春季增幅较大,冬季增湿趋势明显,冬、春季降水量均在20世纪70年代和80年代出现了由少向多的突变;长江源区气候在波动性变暖变干过程中,自1986年起出现了气候转向暖湿的信号,其主要原因在于全球变暖并由此引起的海洋蒸发和陆地蒸散加强,地气水分循环加快,空中水汽输送加强。  相似文献   

16.
横断山系云岭余脉点苍山东西侧小时降水特性对比分析   总被引:2,自引:1,他引:1  
苏锦兰  李建  杨桂荣  杨澄 《气象》2015,41(1):17-24
利用横断山系云岭余脉点苍山东西侧两个国家级气象台站2005—2012年逐小时降水量数据,详细分析东侧和西侧降水特性及差异。结果表明点苍山东西侧多年平均降水气候态相似,两侧年降水量接近,降水季节演变一致,但小时尺度的降水变化却存在明显差异:降水量和降水频次日变化在东侧以单峰型为主,西侧则双峰型变化显著;东西侧均存在后半夜降水量和降水频次高峰,主要由持续6h及以上的长时降水事件引起,且该高峰对总降水量的贡献东侧略大于西侧、持续时间东侧略长于西侧;西侧在午后至傍晚出现另一个降水量和降水频次高峰,一般由持续6h以下的中、短时降水事件造成;累积小时降水量和降水频次的最大值东西侧均于凌晨出现,出现时间东侧滞后于西侧3h;累积小时降水量的最小值东侧出现于傍晚、西侧则在正午发生,而累积小时降水频次的最小值东西侧均出现在正午前后。小时雨强日变化西侧较东侧强烈,尤其是夜间,西侧存在21时和03—04时大雨强时段,东侧雨强则缓慢变化于清晨07—08时达最大。这种小时降水特性的东西差异受点苍山地形影响,南北走向高大山脉的特殊地形使两侧下垫面辐射差异在傍晚达最大,辐射强的西侧容易形成降水量、降水频次、小时雨强的傍晚高峰。该区域降水特性的不均匀分布使其成为西南复杂地形区气候区域差异的典型代表。  相似文献   

17.
利用四川省雅安市1951~2008年逐日降水资料和1969~2000年逐小时降水资料,统计分析了青藏高原东侧雅安地区4个典型旱年和4个典型涝年的降水量、降水频率的多时间尺度变化特征。结果表明,雅安旱年的平均年降水量为1242.9mm,涝年的平均年降水量比旱年多1010mm。旱年汛期降水量占旱年降水总量的70.4%,涝年汛期降水量超出旱年一倍,且占涝年降水总量的81.1%。旱、涝年降水量的季节变化明显,且涝年的季节差异更加显著;雨强与降水量的季节变化相似,夏季达到最大,且旱、涝年年雨强和汛期雨强的差异很明显;旱、涝年之间的雨日差异要小的多,季节差异也不突出。旱、涝年降水量和雨日的最大值、最小值出现月份不同,旱年降水量7月最多、1月最少,而涝年降水量8月最多、12月最少。另外,旱、涝年白天、夜间的月降水量和月雨日最大值出现时间不同,并且不同降水强度,旱、涝年降水量和雨日的逐月变化也有较大差异;旱、涝年降水日变化与夜雨特征都突出,但夜间降水量和频次远远大于白天。旱、涝年降水量和频次的最大值、最小值出现时间有差异,旱年最大小时降水量在01时,最小在14时。涝年夜间小时降水量为双峰结构,最大小时降水量在23时,另一最大值在03时,最小在16时。旱年和涝年最大小时降水频次均出现在00时,最小分别出现在14时和15时。并且,降水量和频次从谷值到峰值的增加速率超过了从峰值到谷值的衰减速率;进一步分析发现,随着降水强度的增加,其夜间降水量越容易出现多峰值的波动,且旱、涝年夜间降水量和频次的差值也越明显。其中,旱年中雨和大雨降水量和频次高于涝年,但涝年暴雨降水量和频次远高于旱年。   相似文献   

18.
初始云滴浓度(CCN)对对流性降水作用的数值试验   总被引:6,自引:4,他引:6  
本文利用一个二维滞弹性非静力平衡云模式[1],选择三个典型个例,就初始云滴浓度(CCN)对对流性暖雨和冷雨过程的效应进行了数值试验。模拟结果表明:初始CCN对对流性降水影响较大。对暖雨过程而言,随着初始CCN的增大,地面累积降水量减弱;对冷雨过程而言,增大初始CCN,可削弱对流强度,减少地面累积降雹量,延缓液态水到达地面的时间,但最终增强了地面累积液态降水量。并且分析了初始CCN导致暖雨和冷雨过程这种差别的原因。  相似文献   

19.
开展人工降雨,布雨量点,可不携带雨量简和量杯,只要带一钢卷尺和一杆标准称就可测算出准确的降水量,此法为小气候布点带来了方便,观介绍如下。要知测雨新法必须首先弄清降雨量的概念,降雨量即天空降水落到地面未经蒸发、渗透、流失而在水平面上积聚的深度,在水文上称之为降雨深,气象学称之为降水量,据上述概念则降水量的公式为:h=(1)式中h为降水量,V为降水体积,r为圆形接水桶上园半径(r2为接雨面积)。当桶上口径一定时,则1/rr2为雨量换算系数,只要知道降水的体积或质量,就可算出降水量。又因V==P/p,雨水的密度p…  相似文献   

20.
从1998—2007年大通地区≥0.1mm降水量和不同云层特征分析研究发现:大通地区的降水类型主要有雪、阵雪、阵雨、阵雨转雨、雨等5种,雪、雨主要降自高层云中(高层云Asop或Astra),阵雪、阵雨主要降自(Cbcap)巾;其二雨产生的降水量最大,阵雨、阵雨转雨产生的降水量次之,阵雪产生的降水量最小;其三≥0.1mm的降水日数雨最多,阵雨次之,阵雪最少;其四大通地区的降水量主要集中在4~9月份,人工增雨工作应选择4—9月份作为增雨期,5—9月份为最佳增雨期,选择高层云作为主要增雨对象,其它云类为次要增雨对象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号