首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Determination of the rotation of the solar core requires very accurate data on splittings for the low-degree modes which penetrate to the core, as well as for modes of higher degree to suppress the contributions from the rest of the Sun to the splittings of the low-degree modes. Here we combine low-degree data based on 32 months of observations with the BiSON network and data from the LOWL instrument. The data are analysed with a technique that specifically aims at obtaining an inference of rotation that is localized to the core. Our analysis provides what we believe is the most stringent constraint to date on the rotation of the deep solar interior.  相似文献   

2.
Measurements of both solar irradiance and p-mode oscillation frequencies indicate that the structure of the Sun changes with the solar cycle. Balmforth, Gough & Merryfield investigated the effect of symmetrical thermal disturbances on the solar structure and the resulting pulsation frequency changes. They concluded that thermal perturbations alone cannot account for the variations in both irradiance and p-mode frequencies, and that the presence of a magnetic field affecting acoustical propagation is the most likely explanation of the frequency change, in the manner suggested earlier by Gough & Thompson and by Goldreich et al. Numerical simulations of Boussinesq convection in a magnetic field have shown that at high Rayleigh number the magnetic field can modify the preferred horizontal length scale of the convective flow.
Here, we investigate the effect of changing the horizontal length scale of convective eddies on the linewidths of the acoustic resonant mode peaks observed in helioseismic power spectra. The turbulent fluxes in these model computations are obtained from a time-dependent, non-local generalization of the mixing-length formalism. The modelled variations are compared with p-mode linewidth changes revealed by the analysis of helioseismic data collected by the Birmingham Solar-Oscillations Network (BiSON); these low-degree (low- l ) observations cover the complete falling phase of solar activity cycle 22. The results are also discussed in the light of observations of solar-cycle variations of the horizontal size of granules and with results from 2D simulations by Steffen of convective granules.  相似文献   

3.
We present low-ℓ rotational p-mode splittings from the analysis of 8 yr of observations made by the Birmingham Solar-Oscillations Network (BiSON) of the full solar disc. These data are presented in the light of a thorough investigation of the fitting techniques used to extract them. Particular attention is paid to both the origin and magnitude of bias present in these estimates. An extensive Monte Carlo strategy has been adopted to facilitate this study – in all, several thousand complete, artificial proxies of the 96-month data set have been generated to test the analysis of real 'full-disc' data. These simulations allow for an assessment of any complications in the analysis which might arise from variations in the properties of the p modes over the 11-yr solar activity cycle.
The use of such an extended data set affords greater precision in the splittings, and by implication the rotation rate inferred from these data, and reduces bias inherent in the analysis, thereby giving a more accurate determination of the rotation. The grand, weighted sidereal average of the BiSON set is     , a value consistent with that expected were the deep radiative interior     to rotate at the same frequency, and in the same 'rigid' manner, as the more precisely and accurately studied outer part of the radiative zone.  相似文献   

4.
The Sun is the only star for which individual surface features can be observed directly. For other stars, the properties of starspots, stellar rotation, stellar flares, etc, are derived indirectly via variation of star‐integrated spectral line profiles or their luminosity measurements. Solar disk‐integrated and disk‐resolved observations allow for investigations of the contribution of individual solar disk features to sun‐as‐a‐star spectra. Here, we provide a brief overview of three sun‐as‐a‐star programs, currently in operation, and describe recent improvements in observations and data reduction for the Integrated Sunlight Spectrometer (ISS), one of three instruments comprising the Synoptic Optical Long‐term Investigations of the Sun (SOLIS) system. Next, we discuss studies employing sun‐as‐a‐star observations (including Ca II K line as proxy for total unsigned magnetic flux and 2800 MHz radio flux) as well as the effects of flares on solar disk‐integrated spectra. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Today the Sun has a regular magnetic cycle driven by a dynamo action. But how did this regular cycle develop? How do basic parameters such as rotation rate, age, and differential rotation affect the generation of magnetic fields? Zeeman Doppler imaging (ZDI) is a technique that uses high‐resolution observations in circularly polarised light to map the surface magnetic topology on stars. Utilising the spectropolarimetric capabilities of future large solar telescopes it will be possible to study the evolution and morphology of the magnetic fields on a range of Sun‐like stars from solar twins through to rapidly‐rotating active young Suns and thus study the solar magnetic dynamo through time. In this article I discuss recent results from ZDI of Sun‐like stars and how we can use night‐time observations from future solar telescopes to solve unanswered questions about the origin and evolution of the Sun's magnetic dynamo (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We make use of 3456 d of observations of the low-ℓ p-mode oscillations of the Sun in order to study the evolution over time of the measurement precision of the radial eigenfrequencies. These data were collected by the ground-based Birmingham Solar-Oscillations Network (BiSON) between 1991 January and 2000 June. When the power spectrum of the complete time series is fitted, the analysis yields frequency uncertainties that are close to those expected from the returned coherence times of the modes. The slightly elevated levels compared with the prediction appear to be consistent with a degradation of the signal-to-noise ratio in the spectrum that is the result of the influence of the window function of the observations (duty cycle 71 per cent). The fractional frequency precision reaches levels of a several parts in 106 for many of the modes. The corresponding errors reported from observations made by the GOLF instrument on board the ESA/NASA SOHO satellite, when extrapolated to the length of the BiSON data set, are shown to be (on average) about ∼25 per cent smaller than their BiSON counterparts owing to the uninterrupted nature of the data from which they were derived.
An analysis of the BiSON data in contiguous segments of different lengths, T , demonstrates that the frequency uncertainties scale as T −1/2. This is to be expected in the regime where the coherence (life) times of the modes, τ n ℓ, are smaller than the observing time T (the 'oversampled' regime). We show that mode detections are only now beginning to encroach on the 'undersampled' regime (where   T < τ n ℓ)  .  相似文献   

7.
We describe solar observations carried out for the first time jointly with Kilpisjärvi Atmospheric Imaging Receiver Array (KAIRA) and Aalto University Metshovi Radio Observatory (MRO). KAIRA is new radio antenna array observing the decimeter and meter wavelength range. It is located near Kilpisjärvi, Finland, and operated by the SodankyläGeophysical Observatory, University of Oulu. We investigate the feasibility of KAIRA for solar observations, and the additional benefits of carrying out multi‐instrument solar observations with KAIRA and the MRO facilities, which are already used for regular solar observations. The data measured with three instruments at MRO, and with KAIRA during time period 2014 April–October were analyzed. One solar radio event, measured on 2014 April 18, was studied in detail. Seven solar flares were recorded with at least two of the three instruments at MRO, and with KAIRA during the chosen time period. KAIRA is a great versatile asset as a new Finnish instrument that can also be used for solar observations. Collaboration observations with MRO instruments and KAIRA enable detailed multi‐frequency solar flare analysis. Flare pulsations, flare statistics and radio spectra of single flares can be investigated due to the broad frequency range observations. The Northern locations of both MRO and KAIRA make as long as 15‐hour unique solar observations possible during summer time. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Polar faculae are of special interest for solar physics because of their close relationship to the global magnetic field of the Sun and to solar activity, and because of the recently found kilogauss magnetic fields, which are very unusual for the structures outside active regions at high latitudes of the Sun. The idea is that polar faculae can be represented by bundles of unresolved small‐scale magnetic flux tubes, which are characterized by sizes of about 100 km and strong magnetic fields. High resolution spectro‐polarimetric observations of the considered structures were performed and complemented by the radiation transfer calculations with oblique rays passing through an inhomogeneous magnetic medium. The recent results of observations and numerical calculations are presented.  相似文献   

9.
The interaction between differential rotation and magnetic fields in the solar convection zone was recently modelled by Brun (2004). One consequence of that model is that the Maxwell stresses can oppose the Reynolds stresses, and thus contribute to the transport of the angular momentum towards the solar poles, leading to a reduced differential rotation. So, when magnetic fields are weaker, a more pronounced differential rotation can be expected, yielding a higher rotation velocity at low latitudes taken on the average. This hypothesis is consistent with the behaviour of the solar rotation during the Maunder minimum. In this work we search for similar signatures of the relationship between the solar activity and rotation determined tracing sunspot groups and coronal bright points. We use the extended Greenwich data set (1878–1981) and a series of full-disc solar images taken at 28.4 nm with the EIT instrument on the SOHO spacecraft (1998–2000). We investigate the dependence of the solar rotation on the solar activity (described by the relative sunspot number) and the interplanetary magnetic field (calculated from the interdiurnal variability index). Possible rotational signatures of two weak solar activity cycles at the beginning of the 20th century (Gleissberg minimum) are discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Solar diameter measurements have been made nearly continuously through different techniques for more than three centuries. They were obtained mainly with ground-based instruments except for some recent estimates deduced from space observations. One of the main problems in such space data analysis is that, up to now, it has been difficult to obtain an absolute value owing to the absence of an internally calibrated system. Eclipse observations provide a unique opportunity to give an absolute angular scale to the measurements, leading to an absolute value of the solar diameter. However, the problem is complicated by the Moon limb, which presents asphericity because of the mountains. We present a determination of the solar diameter derived from the total solar eclipse observation in Turkey and Egypt on 29 March 2006. We found that the solar radius carried back to 1 AU was 959.22±0.04 arcsec at the time of the observations. The inspection of the compiled 19 modern eclipses data, with solar activity, shows that the radius changes are nonhomologous, an effect that may explain the discrepancies found in ground-based measurements and implies the role of the shallow subsurface layers (leptocline) of the Sun.  相似文献   

11.
We discuss observations of the weak ?rst overtone (Δν = 2) CO absorption band near 2300 nm with the U.S. National Solar Observatory Array Camera (NAC), a modern mid‐infrared detector. This molecular band provides a thermal diagnostic that forms lower in the atmosphere than the stronger fundamental band near 4600 nm. The observed center‐to‐limb increase in CO line width qualitatively agrees with the proposed higher temperature shocks or faster plasma motions higher in the COmosphere. The spatial extent of chromospheric shock waves is currently at or below the diffraction limit of the available CO lines at existing telescopes. Five minute period oscillations in line strength and measured Doppler shifts are consistent with the p‐mode excitation of the photospheric gas. We also show recent efforts at direct imaging at 4600 nm. We stress that future large‐aperture solar telescopes must be teamed with improved, dynamic mid‐infrared instruments, like the NAC, to capitalize on the features that motivate such facilities (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Here we report a radio burst in absorption at 9?–?30 MHz observed with the UTR-2 telescope. This event occurred on 19 August 2003 about 11:16?–?11:26 UT, against solar type IV/II emission background. It is the first event where absorption was observed below 30 MHz. The absorption region, comparable with the solar radius size, traveled a long distance into the upper corona from the Sun. We show that the burst minimum corresponds to the almost full absorption of the solar radio emission up to a background level of the quiescent Sun. This supports the interpretation of the phenomenon as an absorption. The result is examined independently with the Nançay Decameter Array measurements and the Wind WAVES instrument records.  相似文献   

13.
We compare changes in the frequencies of solar acoustic modes with degree between 0 and 2, as derived from Global Oscillation Network Group (GONG), Birmingham Solar Oscillations Network (BiSON) and Michelson Doppler Imager (MDI) spectra obtained between 1995 and 2003. We find that, after the solar-activity dependence has been removed from the frequencies, there remain variations that appear to be significant, and are often well correlated between the different data sets. We consider possible explanations for these fluctuations, and conclude that they are likely to be related to the stochastic excitation of the modes. The existence of such fluctuations has possible relevance to the analysis of other low-degree acoustic mode spectra such as those from solar-type stars.  相似文献   

14.
马兵  陈玲  吴德金 《天文学报》2023,(3):35-233
与太阳射电爆发相比,通常认为频率较低的行星际射电爆发产生于远离低日冕的行星际空间.地球电离层的截止导致地基设备无法对其进行观测.美国国家航空航天局(National Aeronautics and Space Administration, NASA)发射的帕克太阳探测器(Parker Solar Probe, PSP)是迄今为止距离太阳最近的空间探测器.其搭载的射电频谱仪能够对10 k Hz–19.17 MHz频段范围内的射电辐射进行观测. PSP能够靠近甚至可能穿越行星际III型射电爆发的辐射源区,因此使用PSP对行星际射电爆发进行观测具有前所未有的优势.简要介绍了目前为止使用PSP的射电观测数据对行星际III型射电爆发的多方面研究,包括爆发的发生率、偏振、散射、截止频率、可能的辐射机制和相关的辐射源区等方面的研究进展,并讨论了其未来的研究前景.  相似文献   

15.
Individual X-ray photons in the keV energy range produce hundreds of photoelectrons in a single pixel of a CCD array detector. The number of photoelectrons produced is a linear function of the photon energy, allowing the measurement of spectral information with an imaging detector system. Most solar X-ray telescopes, such as Yohkoh/SXT and Hinode/XRT, use CCD detectors in an integrating mode and are designed to make temperature estimates from multiband filter photometry. We show how such instruments can be used in a new way to perform a limited type of this photon spectroscopy. By measuring the variance in intensity of a series of repeated images through a single filter of an X-ray source, the mean energy per detected photon can be determined. This energy is related to the underlying coronal spectrum, and hence it can be used to deduce the mean plasma temperature. We apply this technique to data from the Yohkoh Soft X-Ray Telescope and compare the temperatures obtained with this technique with the temperatures derived using the standard filter ratio method for a postflare loop system. Given the large dynamic range of the soft X-ray flux observed from the Sun, we describe the requirements for a future instrument that would be better suited to performing photon spectroscopy. B.J. Labonte deceased 24 October 2005.  相似文献   

16.
The present work is about the interpretation of the linear polarization of the O VI D2 (λ1032) coronal line observed by SUMER/SoHO. We take into account the effect of the Doppler redistribution due to the scattering ions motion. We consider the cases of isotropic and anisotropic velocity field distributions. The latter can be interpreted by the ioncyclotron effect that affects heavy ions in the solar corona. The comparison of the numerical results with the observations yields constraints on the solar wind outflow speed and on the velocity field distribution of the O5+ ions at low coronal altitudes in the polar holes.  相似文献   

17.
Most of our knowledge about the Sun's activity cycle arises from sunspot observations over the last centuries since telescopes have been used for astronomy. The German astronomer Gustav Spörer observed almost daily the Sun from 1861 until the beginning of 1894 and assembled a 33‐year collection of sunspot data covering a total of 445 solar rotation periods. These sunspot drawings were carefully placed on an equidistant grid of heliographic longitude and latitude for each rotation period, which were then copied to copper plates for a lithographic reproduction of the drawings in astronomical journals. In this article, we describe in detail the process of capturing these data as digital images, correcting for various effects of the aging print materials, and preparing the data for contemporary scientific analysis based on advanced image processing techniques. With the processed data we create a butterfly diagram aggregating sunspot areas, and we present methods to measure the size of sunspots (umbra and penumbra) and to determine tilt angles of active regions. A probability density function of the sunspot area is computed, which conforms to contemporary data after rescaling. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The GREGOR Fabry‐Pérot Interferometer (GFPI) is one of three first‐light instruments of the German 1.5‐meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large‐format, high‐cadence CCD detectors with sophisticated computer hard‐ and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field‐of‐view (FOV) of 50″×38″is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25″×38″. The spectral coverage in the spectroscopic mode extends from 530–860 nm with a theoretical spectral resolution of R ≈250 000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580–660 nm. The combination of fast narrow‐band imaging and post‐factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
太阳是与地球关系最为密切的天体.发生在日面上的剧烈爆发性活动可能对人类的生存环境产生巨大影响甚至是灾难性后果.包含太阳耀斑、暗条爆发和日冕物质抛射在内的太阳爆发活动是同一物理过程的不同表现形式,其能量来源于爆发前储存在日冕中的磁场自由能.因此,了解日冕磁场的3维结构是理解太阳爆发的触发机制以及活动区的稳定性等现象的前提.由于观测技术限制,目前尚无法对日冕磁场进行常规观测,因此发展了多种利用可常规观测的光球磁场来重建日冕磁场的方法.主要评述近10 yr来各种日冕磁场重建方法在研究太阳爆发活动中的应用.  相似文献   

20.
A variant to implement a spacecraft (SC) spatial attitude system with respect to the Sun is discussed. The sunward direction and the solar rotation axis are used as reference points. The system is based on measuring spectral line Doppler shift by scanning the solar image along the limb and is self-adjusting for relative spectral line shifts and instrument band shifts. The first harmonic of the signal serves as a basis for accurate adjustment of filter band. The second harmonic phase is used to measure the spacecraft attitude. The application of this method holds the greatest promise when the SO is stabilized by the sunward spinning because this ensures continuous monitoring of the spacecraft attitude.In addition, the method provides information on the precise coordinates of solar surface details during space-borne observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号