首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The data of proton fluences measured in three ranges of energy values (1 MeV, 10MeV, and 100 MeV) in the current solar cycle 22 have been analysed to detect periodicities. Power spectral analysis of the time series of the data of proton fluences shows a periodicity of 74 days, which conforms to that of other kinds of solar activity as reported by earlier authors, thus indicating the intimate relationship of proton emission with solar activity.  相似文献   

2.
The importance of energetic particles in the generation of solar flares and related phenomena has been underestimated if not completely neglected. A reexamination of their role in the light of recent observations carried out during the last solar maximum by a number of experiments on SMM and Hinotori satellites points out the continuous and violent evolution of the solar atmosphere. Most observed features can be better explained by the old idea that particles are trapped in magnetic loops above active regions where they are first heated and then accelerated by absorbing part of the wave energy flowing upwards continuously from the convection zone. Their catastrophic release into the chromosphere as a consequence of an instability in the region such as chromospheric heating or due to the emergence of new magnetic flux is considered as being the flare proper. Since the trapping of the particles involves the generation of resonant waves, a reassessment of the isotopic overabundance problem as well as a search for these waves in interplanetary space are proposed.  相似文献   

3.
Anita Joshi 《Solar physics》1995,157(1-2):315-324
This paper presents the results of studies of the asymmetries (N-S and E-W) for different manifestations of solar activity events (sunspot groups, H flares and active prominences/filaments) during the maximum-phase (1989–1991) of solar cycle 22. During the period considered, the results obtained show the existence of a real N-S asymmetry, whereas the E-W asymmetry may exist only for H flares. There is no definite relationship between the asymmetries and the occurrence of events; however, around low activity sometimes we find enhanced asymmetry, and low asymmetry around high activity. Our study suggests a good agreement with similar studies made by others.  相似文献   

4.
We examined solar energetic proton (SEP) events associated with intense H flares. We located these flares on the solar disk and obtained their distribution in heliographic longitude as well as their angular distance distribution with respect to the neutral lines corresponding to the heliospheric current sheet at 2.5R. We found that the SEP-associated H flares tend to occur in active regions at the feet of those helmet streamers which form the heliomagnetic equator and are related to coronal mass ejections (CMEs) and CME shocks. We discuss the possible role of flares, CMEs and CME shocks in generating SEPs.  相似文献   

5.
Yung Mok 《Solar physics》1985,95(1):181-188
The microscopic stability of an electron stream flowing down to the photosphere from the corona is examined. It is found that, while a power-law distribution is stable in the low-density corona, it is unstable against the generation of magnetized electron plasma waves in the high-density photosphere. The scattering of these energetic electrons may alter their radiation signatures.  相似文献   

6.
We consider the relationship of electromagnetic radiation in the three most intense flares of solar cycle 23, more specifically, those of October 28, 2003, January 20, 2005, and September 7, 2005, to the acceleration and release of protons into interplanetary space. The impulsive phase of these flares lasted ~ 20 min and consisted of at least three energy release episodes, which differed by their manifestation in the soft (1–8 Å, GOES) and hard (>150 keV, INTEGRAL) X-ray ranges as well as at radio frequencies of 245 MHz and 8.8 GHz. The protons and electrons were accelerated in each episode, but with a different efficiency; the relativistic protons were accelerated only after 5–6min of impulsive-phase development after the onset of a coronal mass ejection. It is at this time that maximum hard X-ray fluxes were observed in the September 7, 2005 event, which exceeded severalfold those for the other two flares considered. We associate the record fluxes of protons with energies > 200MeV observed in the heliosphere in the September 7, 2005 event with the dynamics of the impulsive phase. The extreme intensities of the microwave emission in the October 28, 2003 and January 20, 2005 events were probably attributable to the high-energy electron trapping conditions and did not reflect the acceleration process.  相似文献   

7.
Longitude-latitude and time-latitude distributions of the number and area of prominences observed at Lomnický Stit coronal station in the years 1986–1990 are studied using the method of contour maps construction with different degree of smoothing. Special attention is paid to the bifurcation in the prominence distribution. Comparison with the ascending phase of solar cycle 21 is made.  相似文献   

8.
S. R. Kane 《Solar physics》1982,113(1-2):145-164
The propagation, cofinement and total energy of energetic (>25 keV) electrons in solar flares are examined through a brief review of the following hard X-ray measurements: (1) spatially resolved observations obtained by imaging instruments; (2) stereoscopic observations of partially occulted sources providing radial (vertical) spatial resolution; and (3) directivity of the emission measured through stereoscopic observations and the center-to-limb variation of the occurrence frequency of hard X-ray flares. The characteristics of the energetic electrons are found to be quite distinct in impulsive and gradual hard X-ray flares. In impulsive flares the non-thermal electron spectrum seems to extend down to 2 keV indicating that the total energy of non-thermal electrons is much larger than that assumed in the past.  相似文献   

9.
Kane  S. R. 《Solar physics》1987,113(1-2):145-164
Solar Physics - The propagation, cofinement and total energy of energetic (>25 keV) electrons in solar flares are examined through a brief review of the following hard X-ray measurements:...  相似文献   

10.
11.
This paper considers 3246 solar flares in the line Hα, which were accompanied by X-ray emission with a power f ≥ 5 × 10?6 Wm?2 in the solar cycle 22 (CR1797-CR1864). During 33 rotations, the specific power of X-ray emission of the flares increased monotonically by a factor of 4 from the cycle minimum up to its first maximum. The number of flares in each solar turnover rises non-monotonically and disproportionately to the relative number of sunspots. For the entire interval of time, one can identify several longitudinal intervals with increased flare activity. They exist during 5–10 rotations. The characteristics of the flares for 33 rotations in cycles 22 and 23 (CR1797-CR1961) are compared. It is concluded that the Sun is more active in cycle 22 than in cycle 23.  相似文献   

12.
On the basis of solar flare forecasts, balloon flights were made from Hyderabad, India (vertical geomagnetic threshold rigidity of 16.9 GV), to detect the possible emission of high energy neutrons during solar flares. The detector comprised of a central plastic scintillator, completely surrounded by an anticoincidence plastic scintillator shield. The instrument responds to neutrons of about 15–150 MeV and gamma rays of about 5–30 MeV with about the same efficiency. The detector was flown to an atmospheric depth of 25 g cm-2 on February 26, 1969; while the balloon was at ceiling a flare of importance 2B and one of 1N occurred. No perceptible flare associated increase in the counting rate was observed. Using the observed counting rates, an upper limit of 1.2 × 10-2 neutrons cm-2 sec-1 is obtained for the first time for a flare of importance 2B for neutrons of energy 15–150 MeV. The corresponding upper limit for gamma rays of energy 5–30 MeV is found to be 10-2 photons cm-2 sec-1. The neutron flux limits are compared with the recent calculations of Lingenfelter.  相似文献   

13.
A correlative study is made between inferred solar sources of high-speed solar wind streams and extended white-light coronal features. The solar wind data used in the study consists of 110 co-rotating high-speed plasma streams observed from spacecraft at 1 AU in the period February 1971-December 1974; the coronal data consists of 144 equatorward extensions of polar coronal holes and 15 equatorial coronal holes, derived fromK-coronometer maps of the white-light corona during the same period. Of 110 observed solar wind streams 88 could directly be associated with an equatorward extension of a polar-cap coronal hole and 14 could be associated with a low-latitude equatorial coronal hole. In 8 cases no visible coronal feature was identified. Of 144 identified polar-cap extensions 102 were associated with a high-speed stream observed at 1 AU; 19 coronal features were related in time to data gaps in the solar wind measurements, while 38 features did not give rise to solar wind streams observed at Earth orbit. The probability of an association depended on the heliographic co-latitude of a polar hole extension, being 50% for a polar lobe extending down to 45° co-latitude and 100% for a polar coronal hole extending to 80° co-latitude or more.Paper presented at the 11th European Regional Astronomical Meeting of the IAU on New Windows to the Univese, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

14.
In the declining phase of solar cycle 20 (1970–74) three pulses of activity occurred and resulted in two well defined ‘stillstands’ in the smoothed means of sunspot, 2800 MHz, and calcium plage data. Marked diminutions in spot and 2800 MHz flux took place in 1970 and 1971, respectively, and were accompanied by concomitant decreases in flare-occurrence. Studies of the latitude distribution of spots and flares show the extent of the dominance of the northern hemisphere in cycle 20 and the marked phase shift between northern and southern hemispheres. In the years studied, the longitudes of centers of activity clustered in identifiable zones or hemispheres for relatively long intervals of time. From mid-1973 to mid-1974 the Sun had a relatively inactive hemisphere centered on ~0° longitude. The relationship of certain well defined ‘coronal holes’ to this inactive hemisphere of the chromosphere is noted. The first two spot groups of the new cycle formed in November 1974 and January 1975 in the longitude zone associated with relatively high levels of old cycle activity, a repetition of the pattern observed in 1963–64.  相似文献   

15.
The explosive phase of a flare can be defined by a simple photometric measurement of H film records of the flare development. Using the quantitative definition, improved correlations are found between the start of the explosive phase and the start of 10.7 cm radio bursts and Sudden Frequency Deviations compared to earlier correlations of the same data using visual estimates of the start of the explosive phase. Explosive development may be confined to only part of a flare.  相似文献   

16.
We present observations of the corona at 169 MHz with the Nançay Radioheliograph during the summer of 1984. We compare synoptic maps of the metric radio emission on the solar disk with synoptic charts of the K-corona as well as of the green and the red lines. Local sources of radio emission are not located near regions of enhanced green or red line emission which, in turn, are in general above chromospheric faculae. Thus the radio emissions located in the surroundings of faculae are apparently related to different loop systems, with lower density. The comparison of the radio data with the K-corona showed one radio source associated with enhanced emission both at 1.3 and at 1.7 R , apparently a streamer. Other radio sources did not show any clear associations, but were nevertheless located within the coronal plasma sheet, delineated by the large-scale K-corona emission. Moreover the large-scale structure of the corona at 169 MHz was quite similar to the coronal plasma sheet observed at 1.3 R above the limb. The extent of the radio emission in latitude is very similar to that of the K-corona, while the coronal line emission is more concentrated near the solar equator.  相似文献   

17.
Power-law distribution for solar energetic proton events   总被引:1,自引:0,他引:1  
Analyses of the time-integrated fluxes of solar energetic particle events during the period 1965–1990 show that the differential distribution of events with flux F is given by a power law, with indices between 1.2 and 1.4 depending on energy. The power law represents a good fit over three to four orders of magnitude in fluence. Similar power-law distributions have been found for peak proton and electron fluxes, X-ray flares and radio and type III bursts. At fluences greater than 109 cm–2, the slope of the distribution steepens and beyond 1010 cm–2 the power-law index is estimated to be 3.5. At energies greater than 10 MeV, the slope of the distribution was found to be essentially independent of solar cycle, when the active years of solar cycles 20, 21, and 22 were analysed. The results presented are the first for a complete period of 27 years, covering nearly 3 complete solar cycles. Other new aspects of the results include the invariance of the exponent with solar cycle and also with integral energy.  相似文献   

18.
Based on the reconnection theory of a flare and on recent observational and statistical findings, the problem of the initial acceleration of solar cosmic rays (SCR) is discussed. Simple estimates of the electric fields required to start the electron acceleration are obtained and the problem of proton ionization losses for overcoming the Coulomb barrier is considered. We take into account also the possible differences between proton and electron spectra from the very beginning of the acceleration process. Special attention is paid to the distribution functions of solar flare events in various parameters (peak fluxes and/or energy fluences in X-ray and radio wave bursts, in proton and electron emissions, etc.). It is shown that the distribution functions allow the interpretation of some scale and time flare parameters in terms of expected threshold effects. However, these functions are still insufficient to evaluate the relative share of different emissions in the global energy budget of a flare. In this context, a more promising approach is to derive the direct ratio between the number of accelerated protons,N p, and total flare energy,W f, within the frame of a certain acceleration model. It is argued that an absolute threshold for proton production (in Hudson's formulation) does not exist. Meanwhile, the flux and threshold energy of accelerated protons overcoming the Coulomb loss maximum, in fact, may depend heavily on the global output of flare energy.  相似文献   

19.
H-alpha flares accompanied by the X-radiation f ?? 10?6 wm?2 in power are examined; 2331 flares were registered during the first half of the 23rd solar cycle (1997?C2000). The specific power of the X-radiation of the flares monotonically doubles from the minimum to the maximum of the sunspot. An increase in the number of flares in each solar rotation is nonmonotonic and disproportional to the relative number of sunspots. Several longitudinal intervals with increased flare activity can be distinguished in the entire time interval of five to ten rotations. The longitudinal distributions of flares and boundaries of the sector structures of a large-scale magnetic field differ considerably. This confirms the existence of two types of zero lines; the first type is determined by active regions, and the second one is determined by large-scale structures with weak magnetic fields. The flares concentrate near Hale??s zero lines of the first type.  相似文献   

20.
The origin of a large co-rotating solar particle event in August, 1970, is discussed. Proton data from spacecraft at five widely separated heliocentric longitudes are used to identify two distinct release points which are over 100° apart in solar longitude. Optical flare data shows a high incidence of time-overlapping flares between plage regions close to the two release points, indicating a good connection between them. Unusual X-ray and radio emissions are also observed from these regions. The spectrum of the relativistic electrons in the co-rotating particle event is represented by a power law with index γ ≈ ?4, considerably steeper than that usually observed from a solar flare. It is concluded that there is a large magnetic loop structure connecting points over 100° apart on the Sun which is able to trap energetic protons and electrons from an earlier solar flare. Subsequent release of these particles establishes an intense, long-lived co-rotating event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号