首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A detailed seasonal study of soil vapor intrusion at a cold climate site with average yearly temperature of 1.9 °C was conducted at a house with a crawlspace that overlay a shallow dissolved‐phase petroleum hydrocarbon (gasoline) plume in North Battleford, Saskatchewan, Canada. This research was conducted primarily to assess if winter conditions, including snow/frost cover, and cold soil temperatures, influence aerobic biodegradation of petroleum vapors in soil and the potential for vapor intrusion. Continuous time‐series data for oxygen, pressure differentials, soil temperature, soil moisture, and weather conditions were collected from a high‐resolution monitoring network. Seasonal monitoring of groundwater, soil vapor, crawlspace air, and indoor air was also undertaken. Petroleum hydrocarbon vapor attenuation and biodegradation rates were not significantly reduced during low temperature winter months and there was no evidence for a significant capping effect of snow or frost cover that would limit oxygen ingress from the atmosphere. In the residual light nonaqueous phase liquid (LNAPL) source area adjacent to the house, evidence for biodegradation included rapid attenuation of hydrocarbon vapor concentrations over a vertical interval of approximately 0.9 m, and a corresponding decrease in oxygen to less than 1.5% v/v. In comparison, hydrocarbon vapor concentrations above the dissolved plume and below the house were much lower and decreased sharply within a few tens of centimeters above the groundwater source. Corresponding oxygen concentrations in soil gas were at least 10% v/v. A reactive transport model (MIN3P‐DUSTY) was initially calibrated to data from vertical profiles at the site to obtain biodegradation rates, and then used to simulate the observed soil vapor distribution. The calibrated model indicated that soil vapor transport was dominated by diffusion and aerobic biodegradation, and that crawlspace pressures and soil gas advection had little influence on soil vapor concentrations.  相似文献   

2.
3.
In this study, we present a petroleum vapor intrusion (PVI) tool implemented in Microsoft® Excel® using Visual Basic for Applications and integrated within a graphical interface. The latter helps users easily visualize two‐dimensional soil gas concentration profiles and indoor concentrations as a function of site‐specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two‐dimensional explicit analytical model that combines steady‐state diffusion‐dominated vapor transport in a homogeneous soil with a piecewise first‐order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final PVI guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.  相似文献   

4.
Stone covers on loessial slopes can increase the time of infiltration by slowing the velocity of the overland flow, which reduces the transport of solutes, but few mechanistic models have been tested under water‐scouring conditions. We carried out field experiments to test a previously proposed, physically based model of water and solute transport. The area of soil infiltration was calculated from the uncovered surface area, and Richards' equation and the kinematic wave equation were used to describe water infiltration and flow along slopes with stone covers. The transport of chemicals into the run‐off from the surface soil, presumably by diffusion, and their movement in the soil profile could be described by the convection–diffusion equations of the model. The simulated and measured data correlated well. The stones on the soil surface reduced the area available for infiltration but increased the Manning coefficient, eventually leading to increased water infiltration and decreased solute loss with run‐off. Our results indicated that the traditional model of water movement and solute migration could be used to simulate water transport and solute migration for stone‐covered soil on loessial slopes.  相似文献   

5.
A vertical soil column setup integrated with wetlands is developed to study the biodegradation and transport of toluene, a light non‐aqueous phase liquid (LNAPL), in the subsurface environment. LNAPL‐contaminated water is applied to infiltrate from the top of the soil column. The observed and simulated breakthrough curves show high equilibrium concentration at top ports rather than at lower ports, indicating effective toluene biodegradation with soil depth. The observed equilibrium concentration of toluene is higher in the case of unplanted wetland, asserting an accelerated biodegradation rate in the planted case. A difference in the relative concentration of toluene between input and output fluxes at 100 h is found as 13.34% and 30.86% for planted and unplanted wetland setups, respectively. Estimated biodegradation rates show that toluene degradation is 2.5 times faster in the planted wetland setup. In addition, the difference in the observed bacterial count and dissolved oxygen prove that toluene degraded aerobically at a faster rate in the planted setup. Simulations show that as time reached 80–100 h, there is no significant change in concentration profile, thereby confirming the equilibrium condition. The results of this study will be useful to frame plant‐assisted bioremediation techniques for LNAPL‐contaminated soil–water resources in the field.  相似文献   

6.
Arsenic is a well‐known groundwater contaminant that causes toxicological and carcinogenic effects in humans. Predicting the transport of arsenic in the subsurface is often problematic because of its complex sorption characteristics. Numerous researchers have reported that arsenic sorption on soil material is initially fast and then subsequently slow. A dual‐site numerical sorption model was previously developed to describe arsenic desorption from arsenic‐contaminated soils in batch experiments in terms of two different release mechanisms. Experiments involving synthetic acid rain leaching of four arsenic‐contaminated soil columns were performed to verify the dual‐site numerical sorption model in the context of one‐dimensional vertical transport. The fitted models successfully simulated the signature long tailings and the two‐stage arsenic leaching patterns for all four soil columns. The dual‐site sorption model was incorporated within the general solute transport simulation code Modular Three‐Dimensional Multispecies (MT3DMS), version 5.10. The resulting version was named MT3DDS and is available for public access. This experimental study has shown that MT3DDS is capable of simulating phase redistribution during transport, and thus provides a new numerical tool for simulating arsenic transport in the subsurface.  相似文献   

7.
Laboratory Experiments for Describing the Migration of Explosives in Sandy Aquifers Leaching the munition residues from the former explosive production site Elsnig in the Upper Elbe Valley (Saxony, Germany) resulted in an undefined plume of groundwater contaminated by nitroaromatics and nitroamines approaching important drinking water resources. Laboratory experiments were carried out to investigate transport and fate phenomena of such substances in aquifer materials. Specific solute storage and migration parameters for modelling the subsurface migration processes were obtained from steady state experiments in soil cores used as 0-dimensional reactors and from dynamic breakthrough curves in soil columns. Using the 0-dimensional reactor tests we focused on isotherm estimation. Sorption was found to be reflected best by Freundlich isotherms for concentrations of nitroaromatics less than 10 mg L?1 and low organic carbon content in the tested subsurface material. TNT-adsorption was slow and strongly correlated with soil permeability. Preliminary kinetic measurements revealed sorption equilibrium after two days. RDX-adsorption was low. All sorption experiments were conducted under non-sterile and aerobic conditions. Microbial activity was controlled by measuring the enzyme activity and the biomass in water and soil samples. After steady state experiments in the 0-dimensional reactors, products initiated by biodegradation of explosives such as aminonitrotoluenes were found. Based on literature, degradation was estimated and correlated with soil texture. For five components, different retardation was observed depending on soil texture by using native groundwater samples in the columns. Specially designed reactor facilities and soil column installations with temperature and flux control as well as on-line measurements of pH, pE, and conductivity were applied. Concentrations of contaminants were analysed both by high performance liquid chromatography and thin layer chromatography. Photolytic reactions have been prevented. Based on all these laboratory experiments, sorption, degradation, and retardation parameters of trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), dinitrobenzene (DNB), dinitrotoluene (DNT), and mononitrotoluene (MNT) in Elsnig sandy aquifers were estimated.  相似文献   

8.
Petroleum hydrocarbon vapors biodegrade aerobically in the subsurface. Depth profiles of petroleum hydrocarbon vapor and oxygen concentrations from seven locations in sandy and clay soils across four states of Australia are summarized. The data are evaluated to support a simple model of biodegradation that can be used to assess hydrocarbon vapors migrating toward built environments. Multilevel samplers and probes that allow near‐continuous monitoring of oxygen and total volatile organic compounds (VOCs) were used to determine concentration depth profiles and changes over time. Collation of all data across all sites showed distinct separation of oxygen from hydrocarbon vapors, and that most oxygen and hydrocarbon concentration profiles were linear or near linear with depth. The low detection limit on the oxygen probe data and because it is an in situ measurement strengthened the case that little or no overlapping of oxygen and hydrocarbon vapor concentration profiles occurred, and that indeed oxygen and hydrocarbon vapors were largely only coincident near the location where they both decreased to zero. First‐order biodegradation rates determined from all depth profiles were generally lower than other published rates. With lower biodegradation rates, the overlapping of depth profiles might be expected, and yet such overlapping was not observed. A model of rapid (instantaneous) reaction of oxygen and hydrocarbon vapors compared to diffusive transport processes is shown to explain the important aspects of the 13 depth profiles. The model is simply based on the ratio of diffusion coefficients of oxygen and hydrocarbon vapors, the ratio of the maximum concentrations of oxygen and hydrocarbon vapors, the depth to the maximum hydrocarbon source concentration, and the stoichiometry coefficient. Whilst simple, the model offers the potential to incorporate aerobic biodegradation into an oxygen‐limited flux‐reduction approach for vapor intrusion assessments of petroleum hydrocarbon compounds.  相似文献   

9.
Macro-pores such as crab burrows are found commonly distributed in salt marsh sediments. Their disturbance on the soil structure is likely to influence both pore water flows and solute transport in salt marshes; however, the effects of crab burrows are not well understood. Here, a three-dimensional model simulated tidally driven pore water flows subject to the influence of crab burrows in a marsh system. The model, based on Richards’ equation, considered variably saturated flow in the marsh with a two-layer soil configuration, as observed at the Chongming Dongtan wetland (Shanghai, China). The simulation results showed that crab burrows distributed in the upper low-permeability soil layer, acting as preferential flow paths, affected pore water flows in the marsh particularly when the contrast of hydraulic conductivity between the lower high-permeability soil layer and the overlying low-permeability soils was high. The burrows were found to increase the volume of tidally driven water exchange between the marsh soil and the tidal creek. The simulations also showed improvement of soil aeration conditions in the presence of crab burrows. These effects may lead to increased productivity of the marsh ecosystem and enhancement of its material exchange with coastal waters.  相似文献   

10.
Despite recent advances in the mechanistic understanding of sorption in groundwater systems, most contaminant transport models provide limited support for nonideal sorption processes such as nonlinear isotherms and/or diffusion-limited sorption. However, recent developments in the conceptualization of “dual mode” sorption for hydrophobic organic contaminants have provided more realistic and mechanistically sound alternatives to the commonly used Langmuir and Freundlich models. To support the inclusion of both nonlinear and diffusion-limited sorption processes in groundwater transport models, this paper presents two numerical algorithms based on the split operator approach. For the nonlinear equilibrium scenario, the commonly used two-step split operator algorithm has been modified to provide a more robust treatment of complex multi-parameter isotherms such as the Polanyi-partitioning model. For diffusion-limited sorption, a flexible three step split-operator procedure is presented to simulate intraparticle diffusion in multiple spherical particles with different sizes and nonlinear isotherms. Numerical experiments confirmed the accuracy of both algorithms for several candidate isotherms. However, the primary advantages of the algorithms are: (1) flexibility to accommodate any isotherm equation including “dual mode” and similar expressions, and (2) ease of adapting existing grid-based transport models of any dimensionality to include nonlinear sorption and/or intraparticle diffusion. Comparisons are developed for one-dimensional transport scenarios with different isotherms and particle configurations. Illustrative results highlight (1) the potential influence of isotherm model selection on solute transport predictions, and (2) the combined effects of intraparticle diffusion and nonlinear sorption on the plume transport and flushing for both single-particle and multi-particle scenarios.  相似文献   

11.
This article describes laboratory batch sorption and column transport experiments that were conducted using heterogeneous alluvial sediments with a wide physical characteristic from wells, located between Lake Mogan and Lake Eymir, Gölbaşı, Ankara. The batch sorption experiment was conducted in two separate systems, that is, single and multicomponents. Single batch experiment was performed to determine equilibrium condition between the heavy metal ions and the soil adsorption sites. The sorption isotherms data from multibatch experiments were used to calculate the sorption parameters. Single batch experiment indicated that equilibrium was attained within 9 days from the start of the sorption test. As a result of multicomponents batch experiments, for Zn and Mn, the sorption process was well described by the Freundlich or Langmuir isotherm model, whereas sorption of Cu was better described by the linear isotherm model. The Kd of Cu were found to be highest in soil 1 (32550.350 L kg−1) and lowest in soil 5 (18170.76 L kg−1). The maximum and minimum sorption capacity values for Zn were found to be in soil 1 (10985.148 mg kg−1) and in soil 2 (8597.14 mg kg−1) units, respectively. [Correction added after online publication 15 July, 2010: In the preceding sentence, the words “minimum” and “maximum” were initially switched.] Similarly, soil 1 (7587.391 mg kg−1) and soil 5 (4908.695 mg kg−1) units provided the maximum and minimum values for Mn. In the column experiments, flow and tracer transport was studied under saturated conditions using conservative tracer to determine the transport parameters. Transport parameter values were obtained by curve-fitting using the nonlinear least-squares optimization code CXTFIT. Results of the column experiments indicated that the dispersivity values obtained for soil samples were in the range of 0.024 to 1.13 cm.  相似文献   

12.
13.
Solute transport through structured, undisturbed soil has been studied in transient, unsaturated experiments using columns from grass and woodland sites on the Lancaster University campus. Three anionic tracers have been used, bromide (Br) and two fluorinated organic acids (pentraflurobenzoic acid and 2,6-diflurobenzoic acid). The process of displacement of stored water from undisturbed columns was investigated using successive inputs of different tracers under similar antecedent conditions. The results indicated that initial breakthrough was rapid, with a relative concentration of 0.8 being reached between 0.4 and 0.5 pore volumes of discharge. It was found that there was an apparent continued discharge of ‘old’ water, stored in the column before any additions of tracer, even after the addition of a total of 4.9 and 5.4 pore volumes of water for the grass and woodland columns, respectively. The implications of the results of these tracer studies for modelling solute transport in structured soils are considered.  相似文献   

14.
Eighteen models with different levels of complexity for representing sorption, mass transfer, and biodegradation are used to simulate the biodegradation of toluene (primary substrate) and TCE (cometabolic substrate). The simulations are conducted for hypothetical completely mixed systems of various scenarios with regard to sorbent, microbial composition, and solute concentrations. The purpose of the suite of simulations is to investigate the sensitivity of different modeling approaches in simulating the bio-attenuation of co-existing solutes in sorbent-water systems. The sensitivity of results to the modeling approach depends on the biogeochemical conditions of the system. For example, the results are insensitive to the type of sorption model in systems with low sorption strength and slow biodegradation rates, and insensitive to the biodegradation rate model if mass transfer controlled. Differences among model results are generally greater when evaluated in terms of total mass removal rather than aqueous phase concentration reduction. The fate of the cometabolite is more sensitive to the proper consideration of co-solute effects than is the fate of the primary substrate. For a given system, graphical comparison of a characteristic mass transfer rate coefficient (αmt) versus a characteristic biodegradation rate coefficient (αbio) provides an indication of how sensitivity to the different processes may be expected to change with time and can guide the selection of an appropriate level of model complexity.  相似文献   

15.
Simultaneous measurement of coupled water, heat, and solute transport in unsaturated porous media is made possible with the multi-functional heat pulse probe (MFHPP). The probe combines a heat pulse technique for estimating soil heat properties, water flux, and water content with a Wenner array measurement of bulk soil electrical conductivity (ECbulk). To evaluate the MFHPP, we conducted controlled steady-state flow experiments in a sand column for a wide range of water saturations, flow velocities, and solute concentrations. Flow and transport processes were monitored continuously using the MFHPP. Experimental data were analyzed by inverse modeling of simultaneous water, heat, and solute transport using an adapted HYDRUS-2D model. Various optimization scenarios yielded simultaneous estimation of thermal, solute, and hydraulic parameters and variables, including thermal conductivity, volumetric water content, water flux, and thermal and solute dispersivities. We conclude that the MFHPP holds great promise as an excellent instrument for the continuous monitoring and characterization of the vadose zone.  相似文献   

16.
When modeling the fate and transport of chemicals in ground water, a common assumption is that sorption equilibrium is achieved rapidly. This local equilibrium assumption is valid when the rate of chemical sorption to soil particles is more rapid than the rate of aqueous chemical change by other processes. However, for some chemicals (e.g., weathered hydrocarbons) this assumption is not necessarily correct. As a result, an increasing body of knowledge related to the extent and rate of release (ROR) of hydrocarbons from soil has been generated.
When evaluating site remediation options, it is important to know when nonequilibrium sorption conditions may have a significant impact on such decisions. In this study, a tiered procedure was developed to consistently evaluate the importance of ROR information at a site. The procedure consists of three tiers, each requiring more information and computational effort than the previous one. The first tier employs three power-law relationships between site parameters and the importance of ROR kinetics to quickly and easily estimate the importance of ROR information at a site. The second tier involves running and evaluating the deterministic component of a ground water fate and transport model. The third tier involves running and evaluating the probabilistic component of the ground water model. Given the sequential nature of the procedure, it is not necessary to perform Tier II (or Tier III) unless the Tier I (or Tier II) evaluation indicates that ROR kinetics may be important at the specific site under consideration. An example of applying the Tier I analysis to a specific site is provided. The results illustrate the influence of the chemical removal processes (e.g., advection and biodegradation) on the predicted importance of ROR kinetics. For the site considered, ROR kinetics had an important impact on model predictions when the biodegradation rate was high.  相似文献   

17.
Aerobic biodegradation can contribute significantly to the attenuation of petroleum hydrocarbons vapors in the unsaturated zone; however, most regulatory guidance for assessing potential human health risks via vapor intrusion to indoor air either neglect biodegradation in developing generic screening levels or allow for only one order of magnitude additional attenuation for aerobically degradable compounds, which may be overly conservative in some cases. This paper describes results from three-dimensional numerical model simulations of vapor intrusion for petroleum hydrocarbons to assess the influence of aerobic biodegradation on the attenuation factor for a variety of source concentrations and depths for residential buildings with basements and slab-on-grade construction. The simulations conducted in this study provide a framework for understanding the degree to which bioattenuation will occur under a variety of scenarios and provide insight into site conditions that will result in significant biodegradation. This improved understanding may be used to improve the conceptual model of contaminant transport, guide field data collection and interpretation, and estimate semi-site-specific attenuation factors for combinations of source concentrations, source depth, oxygen distribution, and building characteristics where site conditions reasonably match the scenarios simulated herein.  相似文献   

18.
《Advances in water resources》2005,28(11):1254-1266
A detailed model was formulated to describe the non-isothermal transport of water in the unsaturated soil zone. The model consists of the coupled equations of mass conservation for the liquid phase, gas phase and water vapor and the energy conservation equation. The water transport mechanisms considered are convection in the liquid phase, and convection, diffusion and dispersion of vapor in the gas phase. The boundary conditions at the soil–atmosphere interface include dynamical mass flux and energy flux that accounts for radiation transport. Comparison of numerical simulations results with published experimental data demonstrated that the present model is able to describe water and energy transport dynamics, including situations of low and moderate soil moisture contents. Analysis of field studies on soil drying suggests that that dispersion flux of the water vapor near the soil surface, which is seldom considered in soil drying models, can make a significant contribution to the total water flux.  相似文献   

19.
Ammonium transport was simulated in horizontal soil columns from an inland alkaline wetland (Fulaowenpao wetland) of Northeast China. The primary objectives of this work are to investigate the changes in ammonium transport rate with increasing distances along horizontal soil column and to determine the effects of water diffusion rate and volumetric water content on ammonium transport rate. Our results showed that water diffusion coefficient was the lowest at the soil layer of 10–20 cm, followed by the 0–10 cm soil layer, and the highest value occured at the soil layer of 20–60 cm. The highest ammonium transport rate also appeared at the soil layer of 20–60 cm, while the lowest value was observed at the soil layer of 10–20 cm. Ammonium transport rates decreased with increasing distances along horizontal soil columns. The ammonium transport rates showed higher values at the distance from 0 to 6 cm and then decreased rapidly from 6 to 18 cm. However, they nearly kept constant and approached to zero after exceeding the distance of 18 cm. Ammonium transport rates increased exponentially with increasing volumetric water contents and water diffusion rates. The alkaline wetland soils prevented ammonium from horizontal diffusion at all soil layers under drying conditions.  相似文献   

20.
This paper develops mass fraction models for transport and fate of agricultural pollutants in structured two-region soils. Mass fraction index models, based on a semi-infinite domain solution, are derived that describe leaching at depth, vapor losses through soil surface, absorption, and degradation in the dynamic- and stagnant-water soil regions. The models predict that leaching is the result of the combined effect of the upward vapor-phase transport relative to downward advection, residence time relative to half-life, dispersion, and lateral diffusive mass transfer. Simulations show that leached fraction of volatile compounds does not always decrease monotonically with increased residence time relative to the pollutant half-life, as a result of complex interactions among the different physical and biochemical processes. The results show that leaching, volatilization, and degradation losses can be affected significantly by lateral diffusive mass transfer into immobile-water regions and advection relative to dispersion (i.e. Peclet number) in the mobile-water regions. It is shown that solute diffusion into the immobile phase and subsequent biochemical decay reduces leaching and vapor losses through soil surface. Potential use of the modified leaching index for the screening of selected pesticides is illustrated for different soil textures and infiltration rates. The analysis may be useful to the management of pesticides and the design of landfills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号