首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two reflection seismic transects, one across the central Appalachians in Virginia and the other across the southern Appalachians in Georgia, reveal a significant contrast in mid- and lower crustal reflectivity from east to west. Data from east of the Blue Ridge geologic province in Virginia and to the east of the Inner Piedmont in Georgia show a highly reflective crust extending from the near-surface to the Moho, including zones of east-dipping reflections, a sub-horizontal reflection signature at 7 seconds, and a west-dipping Moho. Reflection seismic data from west of the Blue Ridge in Virginia and Inner Piedmont farther south are characterized by reflector geometries related to deformation above a master decollement, leading to classic ‘thin-skinned’ tectonic structures in the overlying allochthon, and few if any apparent structures in the underlying basement. The location of the Iapetan rifted margin, the preexistence of favorably oriented structures to the east of this point, and sub-horizontal weak zones within the lower Paleozoic shelf strata have played critical roles in the distribution of seismic reflector geometry. Seismic reflection signatures seen in the southeastern United States are a result of multiple episodes of deformation from the early Paleozoic through the middle Mesozoic. Oblique stresses during late Paleozoic time produced transpression that manifested itself as predominantly strike-slip faulting to the east of the Blue Ridge/Inner Piedmont. Onlapping lower Paleozoic shelf strata responded to tectonic stresses through thin-skinned deformation above a master decollement during the late Paleozoic Alleghanian orogeny, aided in part by sub-horizontal zones of weakness in the strata. This partitioning of strain was supported via tectonic buttressing provided by Precambrian continental crust that was little deformed in the Taconic orogeny. During the Alleghanian orogeny, the variations in Valley and Ridge deformational style between the central and southern Appalachians were controlled by the original shape of the continental edge. Further deformation during Mesozoic extension occurred to the east of the Precambrian rift margin in the region where favorably oriented faults were reactivated, leading to the rotation of the fault zones from more steeply dipping initial orientations, the merging of the mid-crustal reflection zone with the Moho, and the formation of Mesozoic basins and antiformal reflections in the seismic sections.  相似文献   

2.
This paper provides the structural analysis of the Chefchaouen area in the northern Rif. Here the Dorsale Calcaire superposes, by means of an excellently exposed thrust fault, onto the Predorsalian succession in turn tectonically covering the Massylian Unit. Hanging wall carbonates of the Dorsale Calcaire Unit form a WSW-verging regional fold with several parasitic structures, deformed by late reverse faults in places indicating an ENE vergence. A 200 m thick shear zone characterizes the upper part of the Predorsalian succession, located at footwall of the Dorsale Calcaire Unit. Here the dominantly pelitic levels are highly deformed by (i) C′ type shear bands indicating a mean WSW tectonic transport and (ii) conjugate extensional shear planes marking an extension both orthogonal and parallel to the shear direction. The Massylian Unit is characterized by a strain gradient increasing toward the tectonic contact with the overlying Predorsalian succession, where the dominantly pelitic levels are so highly deformed so as appearing as a broken formation. Such as the previous succession, conjugate extensional shear bands and normal faults indicate a horizontal extension parallel to the thrust front synchronous with the mainly WSW-directed overthrusting. The whole thrust sheet pile recorded a further shortening, characterized by a NW–SE direction, expressed by several reverse and thrust faults and related folds. Finally strike-slip and normal faults were the last deformation structures recorded in the analyzed rocks. A possible tectonic evolution for these successions is provided. In the late Burdigalian, the Dorsale Calcaire Unit tectonically covered the Predorsalian succession and together the Massylian Unit. The latter two successions were completely detached from their basement and accreted in the orogenic wedge within a general NE–SW shortening for the analyzed sector of the northern Rif. At lithosphere scale the thrust front migration was driven by roll back and slab tear mechanisms producing a synchronous arching and related counterclockwise rotation of the tectonic prism along the African margin. Radial displacement involved extension parallel to the thrust front well-recorded in the analyzed rocks. The NE–SW shortening, probably acting in the Tortonian–Pliocene interval, was related to the final compression of the Rif Chain resulting in out-of-sequence thrusts affecting the whole orogenic belt.  相似文献   

3.
The Bloody Bluff fault zone, which divides the New England Avalon zone and Nashoba zone, contains at least two shear zones that are within Avalonian rocks. The Rice Road shear zone (sinistral, strike-slip) affects the Westboro Formation and is intruded by the 630 Ma Dedham Granite. The Rice Road shear zone, and equivalent pre-granite mylonites appearing in drill cores, parallel the terrane boundary, and may have controlled the later mylonitization. The Nobscot shear zone (dextral, strike-slip) is a prograde shear zone cutting a granite assumed to be related to the surrounding 630 Ma plutons. Similar shear zones have been seen cutting Late Proterozoic plutons in the New England Avalon zone, and represent a series of en echelon strike-slip shears. The Burlington mylonite zone (shear sense equivocal) is part of the terrane boundary. This is a retrograde shear zone that forms the southeastern border of the Wolfpen lens, a lenticular body of sheared and altered metamorphic and intrusive rock that has been assumed to be part of the New England Avalon zone. Microstructural characteristics indicate that the Burlington mylonite zone was active after the Nobscot shear zone. In particular, quartz in the Nobscot shear zone was dynamically recrystallized by a combination of grain boundary migration and rotation recrystallization processes, thought to occur during shearing at upper-greenschist conditions. In contrast, quartz in the Burlington mylonite zone was recrystallized predominantly by rotation recrystallization, indicating lower-greenschist, retrograde, deformation. The two shear zones are too close for these differences to be a result of a simple thermal field gradient.While mineral assemblages in most of the study area indicate no metamorphic grade higher than upper-greenschist temperatures, the Wolfpen lens contains amphibolites with assemblages formed at temperatures above the oligoclase isograd, indicating mid-amphibolite facies metamorphism. As metamorphic contrast is one of the key features differentiating the Nashoba zone from the New England Avalon zone, the Wolfpen lens cannot be assumed to be part of Avalon. It may be a small block of rocks of intermediate grade between the two terranes.  相似文献   

4.
Tectonic inversion is a common phenomenon in island arc settings, especially in back‐arc basins. The reactivation of normal faults as thrusts, triggered by tectonic inversion, produces typical inversion fault‐related folds and thrusts in the hangingwall. These hangingwall inversion geometries are affected by two factors: the geometry of the underlying master fault and the angle of inclined simple shear relative to the regional dip of strata, in the case that the deformation is approximated by simple shear. This study employed numerical simulations to analyse the influence of the antithetic shear angle on the geometry of the hangingwall and displacement along the master fault. The simulation results reveal that a steeply inclined shear vector during extension produces a narrow, steep‐sided half‐graben, whereas a gently inclined shear produces a wide, open basin. After tectonic inversion, a tight anticline is formed under steeply inclined shear, whereas an open anticline is formed under gently inclined shear. Antithetic shear results in reduced total displacement along the master fault, and the greater the angle between the shear direction and the regional dip, the greater the displacement along the master fault. Because the deformation geometry of syn‐extension layers is affected by extension followed by contraction, a change in the shear angle during tectonic inversion produces a wide variety of deformation geometries. Comparison of the simulation results with the results of analogue modelling suggests that the shear angle decreases by 5° during the transition from extension to tectonic inversion and that such a change may be commonly observed in natural geological structures. These results highlight the benefits of numerical simulations, which can be used to readily examine a variety of constraining parameters and thereby lead to a better understanding of the mechanism of hangingwall deformation, avoiding erroneous estimates of the amount of fault displacement.  相似文献   

5.
Extensional tectonic models with the major features of metamorphic core complexes were established in the Cordilleran region of western North America dur- ing the late 1970s to early 1980s of last century[1—4].Since there were previous thrust events, some re- searchers attributed the extension to crust-thickening of Mesozoic orogen[5—8], i.e. the crust thickening dur- ing orogeny led to the fact that the materials at depthswere heated and partially melted, and the heated and low-density mat…  相似文献   

6.
A number of lode–gold occurrences are hosted by hydrothermally altered greenstones along the southern boundary of the Palaeoproterozoic Central Lapland Greenstone Belt. The hydrothermally altered and mineralised zones are related to a major thrust and shear zone system that extends much across northern Finland. Spatial correlation between mineralized zones, brittle structural features and chemical alteration was explored and identified from high-resolution aeromagnetic data, in combination with airborne electromagnetic and gamma-ray spectrometric data and coupled with petrophysical and palaeomagnetic studies. The most prominent magnetic, ductile signatures formed during the Svecofennian Orogeny (1900–1800 Ma), resulting in elastic, curved, continuous magnetic patterns. These elastic anomaly patterns were disturbed by tectonic stress from S–SW, resulting in parallel, regularly oriented fracture families and thrust faults normal to the main stress direction. According to aeromagnetic, palaeomagnetic and structural evidence, the thrust zone was active during the latest stage of the orogenic event, but was also reactivated at a later date. Airborne gamma-ray data reveals zones of potassic alteration in the ultramafic rock units in the vicinity of cross-sections of these two fault sets. Chemical and mineralogical changes during alteration and metamorphism strongly affected the mafic and ultramafic host rocks throughout the deformation zone. The strong potassium enrichment and coinciding destruction of magnetic minerals resulted in enhanced potassium concentration and reduction of magnetic anomaly amplitudes. Palaeomagnetic results indicate that the remanent magnetization for the altered ultramafic rocks along the thrust zone is of chemical origin (CRM) and was acquired at 1880–1840 Ma, which is presumed also to be the age of the chemical alteration related to gold mineralization.  相似文献   

7.
Abstract   Early Cretaceous structural development of the southern part of the South Kitakami Belt, northeast Japan, is discussed through precise structural mapping and the measurement of semiquantitative strain. The mapping and measurement revealed that wide north- to northeast-trending sinistral shear zones occupied by the 'slate' with higher strain than the surrounding rocks run from the axial part to the western limb of major synclines, with the wavelength of 5–10 km. The major synclines with a U-shaped rock distribution opening to the south are interpreted to be drag folds along the sinistral shear zones. These structures were modified by a second stage of Early Cretaceous sinistral shearing characterized by localized high-temperature mylonite zones along the rim of some of the 120 Ma granitoids that cut the major folds and baked the 'slate' in the older shear zones mentioned above. The rocks of the South Kitakami Belt, which had undergone two stages of shearing, were rapidly exhumed before the deposition of the Late Aptian–Albian Miyako Group. Finally, a restoration model is presented of the Early Cretaceous sinistral displacement and deformation in the study area.  相似文献   

8.
Fault rocks formed in phyllosilicate-bearing rocks formed over a wide range of environmental conditions within the Earth's crust are characterised by similar structural and microstructural features. The most striking of these are (a) P foliation, defined by the preferred alignment of phyllosilicates in a plane oblique to the direction of shear and (b) small-scale shear zones either parallel to the shear direction (Y shears) or oblique to the direction of shear but with the opposite sense of obliquity relative to the P foliation (Riedel shears, R1). The minor shear zones have the same sense of displacement as the host shear zone.The occurrence of these and other structures in clay-rich fault gouges from exceptionally well-exposed fault zones in southeastern Spain is described. The pervasive development of these flow structures throughout large volumes of fault gouge permits fault-displacement vectors to be inferred. For the region studied the movement pictures is relatively simple and is superposed on a complex network of variably oriented fault zones.The naturally produced fault-gouge structures are compared with fault gouges produced experimentally by shearing kaolinite-quartz mixtures between intact blocks over a wide range of experimental conditions. Good correspondence between their respective microstructural features was observed.Finally, attention is drawn to the fact that natural clay-bearing fault gouges are the products of deformation accompanied by very low-grade retrogressive metamorphism, and that part of the micro-structure of these rocks may be ascribed to crystallization under stress. Microstructures are described that are from long-duration experimental runs, (5 months at high temperature and in the presence of water) which go some way towards simulating these effects.  相似文献   

9.
Bata.  AT 《地球物理学报》1997,40(2):239-246
根据航磁、重力和地震数据以及地质和辅助地球物理资料,对约旦东北部前寒武纪岩石的轮廓和变化及其上覆的沉积岩石的厚度进行了研究.识别出5个具有特定磁性特征的磁场区,每个磁场区都有其特征的样式和突变的边界,每个磁场区的物质组成存在明显差异,其构造边界均与断层相对应.计算表明基底表面有很大起伏,磁化的前寒武纪岩石深度变化范围为-5000m至-10000m,可以识别出由基底下陷相对应的5个盆地或拗陷带,同时可见3个起伏较大的构造隆起.探测结果表明,古生代建造中发育的主要断裂呈N-S与NNE向,而在新生代建造中发育的断裂则呈NE-SW,NW-SE和E-W向.研究区构造发展的第一构造阶段与E-W向张力有关,第二构造阶段的产物明显受到第三构造阶段发生的构造变形的改造,并与阿拉伯板块的逆时针旋转有关.磁场区之间的移位、错断、拖曳和并置被认为剪切断层所造成.剪切形式表明位移是左行的,即北侧的块体向北西方向移动.  相似文献   

10.
Tectonically,the large-scale right-lateral strike-slip movement along the Red River fault zone is characterized at its late phase with the southeastward extension and deformation of the Northwestern Yunnan normal fault depression on its northern segment,and the dextral shear displacement on its central-southern segment.Research of the relations between stratum deformation and fault movement on the typical fault segments,such as Jianchuan,southeast Midu,Yuanjiang River,Yuanyang,etc.since the Miocene Epoch shows that there are two times dextral faulting dominated by normal shearing occurring along the Red River fault zone since the Miocene Epoch.The fission track dating (abbreviated to FT dating,the same below) is conducted on apatite samples collected from the above fault segments and relating to these movements.Based on the measured single grain's age and the confined track length,we choose the Laslet annealing model to retrieve the thermal history of the samples,and the results show that the fault zone experienced two times obvious shear displacement,one in 5.5 ±1.5 MaBP and the other in 2.1±0.8 MaBP.The central-southern segment sees two intensive uplifts of mountain mass in the Yuanjiang River-Yuanyang region at 3.6-3.8 MaBP and 1.6-2.3 MaBP,which correspond to the above-mentioned two dextral normal displacement events since the late Miocene Epoch.  相似文献   

11.
The structures and microstructures of the Takanuki and Hitachi areas in the Abukuma massif, Northeast Japan are described. In the Takanuki area, the basic Gosaisho series thrusts the pelitic Takanuki ones in a HP metamorphic context. The nappe structure is afterwards refolded by a migmatitic dome: the Samegawa dome, in a HT metamorphic context. Microtectonic analysis shows that the nappe was transported from south to north along the stretching lineation. Geometric features suggest that the Samegawa dome was emplaced by diapirism. The role of the thrust surface as an instable interface promoting the doming is emphasized. The Hitachi metamorphic rocks composed of basic schist, limestone and sandstone shist thrust the pelitic rocks of the western Hitachi gneisses. As for the Takanuki area, the thrusting occurred in ductile synmetamorphic conditions with a north or northeastward displacement. Owing to lithologic, petrologic, structural similitudes, the nappe of the Hitachi metamorphic rocks and that of the Gosaisho series are unified into a unique nappe with a northward motion. The emplacement occurred between late Permian and late Cretaceous likely in late Jurassic. The allochthonous units of the Abukuma massif are correlated with the Green Schist nappe described in Southwest Japan, since they are surrounded by the same zones, namely the Tanba zone and the Kurosegawa-Kitakami one. Moreover both in Southwest and Northeast Japan, the emplacement of the Green Schist nappes is due to a shear deformation inducing rotational structures along the stretching lineation indicating the same sense of transport, that is eastward in Southwest Japan and northward in Northeast Japan, owing to the late bending of the Japanese Islands. The late Jurassic nappe structure is obliquely overprinted by a HT metamorphism, Ryoke in Southwest Japan, Abukuma in Northeast Japan, and afterwards cut by late faults as the Median Tectonic Line or the Tanakura fault, giving rise to the present complexity.  相似文献   

12.
Mountain ranges that are actively forming around the western and northern perimeter of the Indo-Eurasia collisional deformational field, such as the Mongolian Altai, comprise a unique class of intracontinental intraplate transpressional orogen with structural and basinal elements that are distinct from contractional and extensional orogens. Late Cenozoic uplift and mountain building in the Mongolian Altai is dominated by regional-scale dextral strike-slip faults that link with thrust and oblique-slip faults within a 300-km-wide deforming belt sandwiched between the more rigid Junggar Basin block and Hangay Precambrian craton. Dominant orogenic elements in the Mongolian Altai include double restraining bends, terminal restraining bends, partial restraining bends, single thrust ridges, thrust ridges linked by strike-slip faults, and triangular block uplifts in areas of conjugate strike-slip faults. The overall pattern is similar to a regional strike-slip duplex array; however, the significant amount of contractional and oblique-slip displacement within the range and large number of historical oblique-slip seismic events renders the term “transpressional duplex” more accurate. Intramontane and range flanking basins can be classified as ramp basins, half-ramp basins, open-sided thrust basins, pull-apart basins, and strike-slip basins. Neither a classic fold-and-thrust orogenic wedge geometry nor a bounding foredeep exists. The manner in which upper crustal transpressional deformation is balanced in the lower crust is unknown; however, crustal thickening by lower crustal inflation and northward outflow of lower crustal material are consistent with existing geological and geodetic data and could account for late Cenozoic regional epeirogenic uplift in the Russian Altai and Sayan regions.  相似文献   

13.
Three forms of fault are recognized in Entrada and Navajo Sandstones in the San Rafael Desert, southeastern Utah; deformation bands, zones of deformation bands, and slip surfaces. Small faults occur asdeformation bands, about one millimeter thick, in which pores collapse and sand grains fracture, and along which there are shear displacements on the order of a few millimeters or centimeters. Two or more deformation bands adjacent to each other, which share the same average strike and dip, form azone of deformation bands. A zone becomes thicker by addition of new bands, side by side. Displacement across a zone is the sum of displacements on each individual band. The thickest zones are about 0.5 m and total displacement across a thick zone rarely exceeds 30 cm. Finally,slip surfaces, which are through-going surfaces of discontinuity in displacement, form at either edge of zones of highly concentrated deformation bands. In contrast with individual deformation bands and zones of deformation bands, slip surfaces accommodate large displacements, on the order of several meters in the San Rafael Desert.The sequence of development is from individual deformation bands, to zones, to slip surfaces, and each type of faulting apparently is controlled by somewhat different processes. The formation of zones apparently involves strain hardening, whereas the formation of slip surfaces probably involves strain softening of crushed sandstone.  相似文献   

14.
帕米尔高原位于地中海-喜马拉雅地震带上,晚新生代以来随着印度板块向欧亚板块持续不断地挤压汇聚,其构造运动是欧亚大陆最强烈的地区。高原腹地发育一系列近SN向正断层,包括近SN向的塔什库尔干正断层所处的帕米尔中部现代区域的构造应力场以EW向水平拉张为主。2016年11月25日发生的阿克陶MS 6.7级地震的发震构造为塔什库尔干断层分支的NWW向木吉盆地北缘断层,其具有右旋走滑兼正断性质。地震在震中附近产生同震地表形变带,全长约1km,呈近SN-NNE向水平拉伸,发育近EW—NWW向的张裂缝,为地震破裂的产物,张裂缝的最大水平拉伸位移量和最大垂直位移量分别为46cm和16cm。地表破裂带中的NE和NW向张剪裂缝只是连接贯通这些雁列的张裂缝,其水平相对位移量取决于张裂缝的水平拉伸量和张裂缝之间的几何关系。地表形变带表现的拉张性质与帕米尔高原腹地区域现代应力场最大主压应力为垂直向基本一致,可能与深部热物质上涌造成的上地壳拉伸有关。而地表形变带呈近SN向水平拉张,与区域近EW向拉张应力场之间存在显著差异,这可能是木吉盆地北缘右旋走滑正断层阶区局部应力场调整的结果。  相似文献   

15.
Tectonically, the large-scale right-lateral strike-slip movement along the Red River fault zone is char-acterized at its late phase with the southeastward extension and deformation of the Northwestern Yunnan normal fault depression on its northern segment, and the dextral shear displacement on its central-southern segment. Research of the relations between stratum deformation and fault movement on the typical fault segments, such as Jianchuan, southeast Midu, Yuanjiang River, Yuanyang, etc. since the Miocene Epoch shows that there are two times dextral faulting dominated by normal shearing occurring along the Red River fault zone since the Miocene Epoch. The fission track dating (abbrevi-ated to FT dating, the same below) is conducted on apatite samples collected from the above fault segments and relating to these movements. Based on the measured single grain’s age and the con-fined track length, we choose the Laslet annealing model to retrieve the thermal history of the samples, and the results show that the fault zone experienced two times obvious shear displacement, one in 5.5 ± 1.5 MaBP and the other in 2.1± 0.8 MaBP. The central-southern segment sees two intensive uplifts of mountain mass in the Yuanjiang River-Yuanyang region at 3.6―3.8 MaBP and 1.6―2.3 MaBP, which correspond to the above-mentioned two dextral normal displacement events since the late Miocene Epoch.  相似文献   

16.
韧性剪切带及其变形岩石   总被引:6,自引:0,他引:6       下载免费PDF全文
本文讨论了地壳和上地幔中韧性剪切带及其中的变形岩石。在大多数情况下,韧性剪切带中的变形岩石为糜棱岩,因为经受韧性剪切变形时,岩石的粒度显著减小并发育了强化的叶理(线理)。但是在某些情况下,例如,当隐晶质灰岩及富含长石的岩石经受韧性剪切变形时,剪切带中的变形岩石粒度局部增大或者没有发生明显减小,它们并不是典型的糜棱岩。由于变形环境、变形介质及变形机制的不同,韧性剪切带内岩石变形的产物是不同的  相似文献   

17.
内蒙古大青山地区的临河-集宁断裂带是华北板块北缘的一条重要断裂带。它主要由韧性剪切带、韧脆性剪切带和推覆构造等构成。推覆构造自南向北可分为叠瓦逆冲推覆构造带、紧闭褶皱-逆冲断层变形带、宽缓褶皱一断层转折褶皱带、滑脱褶皱一断层传播褶皱带等4个变形带。断裂带从韧性到脆性表示了其出露深度不同。并有由南到北活动强度逐渐减弱的趋势。该区主要分布有以金为主的多金属矿床和以煤、大理岩为主的非金属矿床。区内金多金属矿床多与韧性剪切带有关,断裂构造为金属矿床的形成提供了空间,也是成矿物质的通道。研究指出了该地区的找矿前景与方向。  相似文献   

18.
Influenced by the far-field effect of India-Eurasia collision, Tianshan Mountains is one of the most intensely deformed and seismically active intracontinental orogenic belts in Cenozoic. The deformation of Tianshan is not only concentrated on its south and north margins, but also on the interior of the orogen. The deformation of the interior of Tianshan is dominated by NW-trending right-lateral strike-slip faults and ENE-trending left-lateral strike-slip faults. Compared with numerous studies on the south and north margins of Tianshan, little work has been done to quantify the slip rates of faults within the Tianshan Mountains. Therefore, it is a significant approach for geologists to understand the current tectonic deformation style of Tianshan Mountains by studying the late Quaternary deformation characteristics of large fault and fold zones extending through the interior of Tianshan. In this paper, we focus on a large near EW trending fault, the Baoertu Fault (BETF) in the interior of Tianshan, which is a large fault in the eastern Tianshan area with apparent features of deformation, and a boundary fault between the central and southern Tianshan. An MS5.0 earthquake event occurred on BETF, which indicates that this fault is still active. In order to understand the kinematics and obtain the late Quaternary slip rate of BETF, we made a detailed research on its late Quaternary kinematic features based on remote sensing interpretation, drone photography, and field geological and geomorphologic survey, the results show that the BETF is of left-lateral strike-slip with thrust component in late Quaternary. In the northwestern Kumishi basin, BETF sinistrally offsets the late Pleistocene piedmont alluvial fans, forming fault scarps and generating sinistral displacement of gullies and geomorphic surfaces. In the bedrock region west of Benbutu village, BETF cuts through the bedrock and forms the trough valley. Besides, a series of drainages or rivers which cross the fault zone and date from late Pleistocene have been left-laterally offset systematically, resulting in a sinistral displacement ranging 0.93~4.53km. By constructing the digital elevation model (DEM) for the three sites of typical deformed morphologic units, we measured the heights of fault scarps and left-lateral displacements of different gullies forming in different times, and the result shows that BEFT is dominated by left-lateral strike-slip with thrust component. We realign the bended channels across the fault at BET01 site and obtain the largest displacement of 67m. And we propose that the abandon age of the deformed fan is about 120ka according to the features of the fan. Based on the offsets of channels at BET01 and the abandon age of deformed fan, we estimate the slip rate of 0.56mm/a since late Quaternary. The Tianshan Mountains is divided into several sub-blocks by large faults within the orogen. The deformation in the interior of Tianshan can be accommodated or absorbed by relative movement or rotation. The relative movement of the two sub-blocks surrounded by Boa Fault, Kaiduhe Fault and BETF is the dominant cause for the left-lateral movement of BETF. The left-lateral strike-slip with reverse component of BETF in late Quaternary not only accommodates the horizontal stain within eastern Tianshan but also absorbs some SN shortening of the crust.  相似文献   

19.
A deep-seated analog of the syntaxis developed in the Tibetan Plateau occurs in the Grenville Orogen of eastern Laurentia. During the final assembly of Rodinia, Amazonia collided with Laurentia and produced a series of large, conjugate, transcurrent, shear systems and pervasive strike-slip deformation that overprinted compressional structures related to the Ottawan Orogeny (the last orogenic phase of what is considered Grenvillian). A northeast-striking dextral system at least 35-km wide developed in the Reading Prong of New York (locally known as the Hudson Highlands), New Jersey, and Pennsylvania. U-Pb SHRIMP zircon geochronology and Ar/Ar thermochronology on the lowest grade cataclasites constrain the age of movement between 1008 and 876 Ma. A 60-km-wide, east-west striking, sinistral shear system developed across the central Adirondack Highlands. This system overprints rocks with granulite-facies metamorphic assemblages containing ca. 1050 Ma metamorphic zircons and is cut by a swarm of 950 Ma leucogranites. The timing, geometric relationships, and shear sense of the Adirondacks and Reading Prong shear systems suggest a conjugate system within a syntaxis with bulk compression directed ENE–WSW. This tectonic scenario invokes a component of strike-parallel deformation during the Ottawan Orogeny and provides a kinematic mechanism for an otherwise enigmatic, synchronous, late (ca. 930 Ma) extensional event including the Carthage–Colton mylonite zone in the northwest Adirondacks and Canada.  相似文献   

20.
Field surveys in the Oga-Atetsu and Yamaguchi areas of Southwest Japan have been conducted in order to precise the structure of the Permian orogen. A stack of nappes is recognized comprising from top to bottom: (1) the Oga nappe which is considered to be a seamount complex, (2) HP Sangun metamorphics, (3) the Permian Yakuno ophiolite, and (4) the Permian detrital Maizuru group which is interpreted as the sedimentary cover of a continental block, called here the Honshu block, outcropping as the Older Granite. This stack of nappes is overthrust by the Paleozoic Hida basement consisting of HT gneisses, granites and late Carboniferous shallow-water sediments. Microtectonic analysis of the Sangun schists shows that the subhorizontal schistosity bearing a submeridian lineation was formed during the synmetamorphic phase. Asymmetric pressure shadows, shear bands and sigmoidal minerals show that the synmetamorphic deformation corresponds to a ductile shear from north to south. The Permian/early Triassic orogeny is interpreted as the result of a collision between the Hida gneiss (or South China block) and the Honshu block, the intervening oceanic area gave rise to southward directed nappes. The Permian orogenic belt extends at least from Taiwan to central Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号