首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Potentiomanometers (PMs) are commonly used to determine flux directions across interfaces between surface waters and aquifers. We describe a complementary function: estimating small‐scale hydraulic conductivity (K) in a lakebed, using the constant‐head injection test (CHIT) by Cardenas and Zlotnik (2003) with the PM designed by Winter et al. (1988). A piezometer with a small screen is inserted into the lakebed. Local head potential is obtained by measuring the head difference between the test point and the aquifer interface. The piezometer is then used for water injection. This technique is illustrated by measurements taken from Alkali Lake in the Sand Hills, Nebraska, United States. Lakebed K and seepage fluxes ranged from 0.037 to 0.090 m/d and Darcy velocities ranged from 0.004 to 0.027 m/d. Results were consistent with the supplementary data gathered using a modified CHIT and a cone penetrometer. The compact size of the device and the small volumes used for injection enable this method to estimate lakebed K values as low as 0.01 to 0.1 m/d, a range seldom explored in lake‐aquifer interface systems.  相似文献   

2.
Lu C  Chen Y  Luo J 《Ground water》2012,50(3):386-393
Prevention of sea water intrusion in coastal aquifers subject to groundwater withdrawal requires optimization of well pumping rates to maximize the water supply while avoiding sea water intrusion. Boundary conditions and the aquifer domain size have significant influences on simulating flow and concentration fields and estimating maximum pumping rates. In this study, an analytical solution is derived based on the potential-flow theory for evaluating maximum groundwater pumping rates in a domain with a constant hydraulic head landward boundary. An empirical correction factor, which was introduced by Pool and Carrera (2011) to account for mixing in the case with a constant recharge rate boundary condition, is found also applicable for the case with a constant hydraulic head boundary condition, and therefore greatly improves the usefulness of the sharp-interface analytical solution. Comparing with the solution for a constant recharge rate boundary, we find that a constant hydraulic head boundary often yields larger estimations of the maximum pumping rate and when the domain size is five times greater than the distance between the well and the coastline, the effect of setting different landward boundary conditions becomes insignificant with a relative difference between two solutions less than 2.5%. These findings can serve as a preliminary guidance for conducting numerical simulations and designing tank-scale laboratory experiments for studying groundwater withdrawal problems in coastal aquifers with minimized boundary condition effects.  相似文献   

3.
The Kuwait Group consists mainly of clastic sediments overlying unconformably the Dammam Formation of Tertiary age. The Kuwait Group is generally divided into three main hydrostratigraphic units: the upper and lower aquifers separated by an aquitard. The upper aquifer is further divided into the water table aquifer, an aquitard and a semiconfined aquifer. This semiconfined unit was pumped and the drawdowns were observed in piezometers screened in various subunits of the Kuwait Group. Some pumping tests of short duration were carried out in the top water table aquifer as well. These tests showed that the subunits of the Kuwait Group are hydraulically interconnected to a varying degree.

The pumping test data were analysed using conventional analytical solutions. The semiconfined pumping test was also simulated by a quasi-three-dimensional model using a leaky multiaquifer modelling technique. The initial hydraulic parameters were improved manually in the model till best fit drawdowns were obtained.

The final parameters obtained by simulation of the pumping tests were used in designing a pilot drainage system for the control of a rising groundwater table in parts of Kuwait City.  相似文献   


4.
Thomas J. Burbey   《Journal of Hydrology》2006,330(3-4):422-434
Field measurements consisting of water levels from a municipal well and three-dimensional surface deformations and strains from high-precision GPS measurements at various radial distances from the well were collected as part of a 62-day controlled aquifer test at Mesquite, NV. These measurements were used as observations in several numerical models and a parameter estimation code to characterize and constrain hydraulic and mechanical properties of a 400 m thick basin-fill aquifer. A parsimonious approach was used in conceptualizing the aquifer system. Nonetheless, results from the calibrated deformation and flow models accurately reproduced the observed head and deformations during the first 20 days of pumping, the time at which a new equilibrium was achieved. Surface deformations were shown to reflect hydraulic anisotropy and direction of principal conductivity. In addition, the radius of influence and cone of depression from pumping was approximated in spite of the fact that no monitoring well data existed at the site. Sensitivity analysis indicates that cyclical head values are most sensitive to changes in horizontal hydraulic conductivity, while time-dependent vertical deformations are most sensitive to changes in skeletal specific storage. This investigation shows that GPS monitoring can be used in place of costly monitoring wells to characterize aquifers for water-management purposes where skeletal deformation tends to be elastic.  相似文献   

5.
This study presents analytical solutions of the three‐dimensional groundwater flow to a well in leaky confined and leaky water table wedge‐shaped aquifers. Leaky wedge‐shaped aquifers with and without storage in the aquitard are considered, and both transient and steady‐state drawdown solutions are derived. Unlike the previous solutions of the wedge‐shaped aquifers, the leakages from aquitard are considered in these solutions and unlike similar previous work for leaky aquifers, leakage from aquitards and from the water table are treated as the lower and upper boundary conditions. A special form of finite Fourier transforms is used to transform the z‐coordinate in deriving the solutions. The leakage induced by a partially penetrating pumping well in a wedge‐shaped aquifer depends on aquitard hydraulic parameters, the wedge‐shaped aquifer parameters, as well as the pumping well parameters. We calculate lateral boundary dimensionless flux at a representative line and investigate its sensitivity to the aquitard hydraulic parameters. We also investigate the effects of wedge angle, partial penetration, screen location and piezometer location on the steady‐state dimensionless drawdown for different leakage parameters. Results of our study are presented in the form of dimensionless flux‐dimensionless time and dimensionless drawdown‐leakage parameter type curves. The results are useful for evaluating the relative role of lateral wedge boundaries and leakage source on flow in wedge‐shaped aquifers. This is very useful for water management problems and for assessing groundwater pollution. The presented analytical solutions can also be used in parameter identification and in calculating stream depletion rate and volume. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Arsenic in groundwater is a serious problem in New England, particularly for domestic well owners drawing water from bedrock aquifers. The overlying glacial aquifer generally has waters with low arsenic concentrations but is less used because of frequent loss of well water during dry periods and the vulnerability to surface‐sourced bacterial contamination. An alternative, novel design for shallow wells in glacial aquifers is intended to draw water primarily from unconsolidated glacial deposits, while being resistant to drought conditions and surface contamination. Its use could greatly reduce exposure to arsenic through drinking water for domestic use. Hypothetical numerical models were used to investigate the potential hydraulic performance of the new well design in reducing arsenic exposure. The aquifer system was divided into two parts, an upper section representing the glacial sediments and a lower section representing the bedrock. The location of the well, recharge conditions, and hydraulic properties were systematically varied in a series of simulations and the potential for arsenic contamination was quantified by analyzing groundwater flow paths to the well. The greatest risk of arsenic contamination occurred when the hydraulic conductivity of the bedrock aquifer was high, or where there was upward flow from the bedrock aquifer because of the position of the well in the flow system.  相似文献   

7.
A simple method of determining the anisotropy ratio of hydraulic conductivity in near-surface granular aquifers using tracer test and piezometer measurements is presented. Depending on the length of time allowed, the test will yield anisotropy ratios that are representative of the distance traversed by the tracer during the test, up to tens of feet from the injection point for some systems. This method is illustrated with an application to a ground water flow system in northern Wisconsin.  相似文献   

8.
Introduction to hydromechanical well tests in fractured rock aquifers   总被引:2,自引:0,他引:2  
This article introduces hydromechanical well tests as a viable field method for characterizing fractured rock aquifers. These tests involve measuring and analyzing small displacements along with pressure transients. Recent developments in equipment and analyses have simplified hydromechanical well tests, and this article describes initial field results and interpretations during slug and constant-rate pumping tests conducted at a site underlain by fractured biotite gneiss in South Carolina. The field data are characterized by displacements of 0.3 μm to more than 10 μm during head changes up to 10 m. Displacements are a hysteretic function of hydraulic head in the wellbore, with displacements late in a well test always exceeding those at similar wellbore pressures early in the test. Displacement measurements show that hydraulic aperture changes during well tests, and both scaling analyses and field data suggest that T changed by a few percent per meter of drawdown during slug and pumping tests at our field site. Preliminary analyses suggest that displacement data can be used to improve estimates of storativity and to reduce nonuniqueness during hydraulic well tests involving single wells.  相似文献   

9.
The determination of anisotropy in a phreatic aquifer by means of a pumping test can be carried out, under given conditions, with common analysis methods. This paper develops and applies an amended method based on a technique proposed by Boulton (1970). This new method enables a quick, simple determination of vertical hydraulic conductivity, given drawdown data from a pumping well and at least one observation well, that is applicable to confined phreatic aquifers.  相似文献   

10.
Halford KJ  Yobbi D 《Ground water》2006,44(2):284-291
A new method was developed for characterizing geohydrologic columns that extended >600 m deep at sites with as many as six discrete aquifers. This method was applied at 12 sites within the Southwest Florida Water Management District. Sites typically were equipped with multiple production wells, one for each aquifer and one or more observation wells per aquifer. The average hydraulic properties of the aquifers and confining units within radii of 30 to >300 m were characterized at each site. Aquifers were pumped individually and water levels were monitored in stressed and adjacent aquifers during each pumping event. Drawdowns at a site were interpreted using a radial numerical model that extended from land surface to the base of the geohydrologic column and simulated all pumping events. Conceptually, the radial model moves between stress periods and recenters on the production well during each test. Hydraulic conductivity was assumed homogeneous and isotropic within each aquifer and confining unit. Hydraulic property estimates for all of the aquifers and confining units were consistent and reasonable because results from multiple aquifers and pumping events were analyzed simultaneously.  相似文献   

11.
This paper presents an in situ falling-head method for measuring hydraulic conductivity of beach sediments in tidal environment. A polyvinyl chloride (PVC) standpipe was vertically pushed into the submerged beach sediments so that its lower part was filled by a sediment column. During the experiment, the sediments were submerged by sea water and the standpipe top was higher than the sea level. The pipe was fully filled with sea water at the beginning of the experiment. Then the water level time series inside and outside the standpipe were recorded. Analytical solutions were derived to describe the relation among the sediment's hydraulic conductivity and the water levels inside and outside the standpipe and used to analyze the experiment data obtained from the intertidal zone of Puqian Bay, Haikou, Hainan Province, China. The water levels predicted by the analytical solution agreed very well with all the experiment data. Experiments for horizontal hydraulic conductivity estimation were also conducted using L-shaped standpipe which bends from vertical to horizontal in the beach sediments. The averaged hydraulic conductivity anisotropy ratio at the study area is about 2.9. After each in situ experiment, the sediments in the standpipe were stored in a plastic box and transported to university laboratory to measure the hydraulic conductivity using falling-head method. It is found that the in situ hydraulic conductivity averages one order of magnitude greater than the laboratory one, indicating that the original beach surface sediments were loose due to tidal and wave actions and that the samples were significantly compacted during the transportation to laboratory.  相似文献   

12.
Alluvial fans are potential sites of potable groundwater in many parts of the world. Characteristics of alluvial fans sediments are changed radially from high energy coarse-grained deposition near the apex to low energy fine-grained deposition downstream so that patchy wedge-shaped aquifers with radial heterogeneity are formed. The hydraulic parameters of the aquifers (e.g. hydraulic conductivity and specific storage) change in the same fashion. Analytical or semi-analytical solutions of the flow in wedge-shaped aquifers are available for homogeneous cases. In this paper we derive semi-analytical solutions of groundwater flow to a well in multi-zone wedge-shaped aquifers. Solutions are provided for three wedge boundary configurations namely: constant head–constant head wedge, constant head–barrier wedge and barrier–barrier wedge. Derivation involves the use of integral transforms methods. The effect of heterogeneity ratios of zones on the response of the aquifer is examined. The results are presented in form of drawdown and drawdown derivative type curves. Heterogeneity has a significant effect on over all response of the pumped aquifer. Solutions help understanding the behavior of heterogeneous multi-zone aquifers for sustainable development of the groundwater resources in alluvial fans.  相似文献   

13.
Pumping test evaluation of stream depletion parameters   总被引:1,自引:0,他引:1  
Lough HK  Hunt B 《Ground water》2006,44(4):540-546
  相似文献   

14.
Aquifer Properties Determined from Two Analytical Solutions   总被引:3,自引:0,他引:3  
In the analysis of pumping test data, the quality of the determined aquifer parameters can be greatly improved by using a proper model of the aquifer system. Moench (1995) provided an analytical solution for flow to a well partially penetrating an unconfined aquifer. His solution, in contrast to the Neuman solution (1974), accounts for the noninstantaneous decline of the water table (delayed yield). Consequently, the calculated drawdown in these two solutions is different under certain circumstances, and this difference may therefore affect the computation of aquifer properties from pumping test data. This paper uses an inverse computational method to calculate four aquifer parameters as well as a delayed yield parameter, α1 from pumping test data using both the Neuman (1974) and Moench (1995) solutions. Time-drawdown data sets from a pumping test in an unconfined alluvial aquifer near Grand Island, Nebraska, were analyzed. In single-well analyses, horizontal hydraulic conductivity values derived from the Moench solution are lower, but vertical hydraulic conductivity values are higher than those calculated from the Neuman solution. However, the hydraulic conductivity values in composite-well analyses from both solutions become very close. Furthermore, the Neuman solution produces similar hydraulic conductivity values in the single-well and composite-well analyses, but the Moench solution does not. While variable α1, seems to play a role in affecting the computation of aquifer parameters in the single-well analysis, a much smaller effect was observed in the composite-well analysis. In general, specific yield determined using the Moench solution could be slightly higher than the values from the Neuman solution; however, they are still lower than the realistic values for sand and gravel aquifers.  相似文献   

15.
The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head‐dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over‐ or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive‐use management tools.  相似文献   

16.
A data assimilation method is developed to calibrate a heterogeneous hydraulic conductivity field conditioning on transient pumping test data. The ensemble Kalman filter (EnKF) approach is used to update model parameters such as hydraulic conductivity and model variables such as hydraulic head using available data. A synthetical two-dimensional flow case is used to assess the capability of the EnKF method to calibrate a heterogeneous conductivity field by assimilating transient flow data from observation wells under different hydraulic boundary conditions. The study results indicate that the EnKF method will significantly improve the estimation of the hydraulic conductivity field by assimilating continuous hydraulic head measurements and the hydraulic boundary condition will significantly affect the simulation results. For our cases, after a few data assimilation steps, the assimilated conductivity field with four Neumann boundaries matches the real field well while the assimilated conductivity field with mixed Dirichlet and Neumann boundaries does not. We found in our cases that the ensemble size should be 300 or larger for the numerical simulation. The number and the locations of the observation wells will significantly affect the hydraulic conductivity field calibration.  相似文献   

17.
A new approach has been developed to detect, characterize, and quantify hydraulic short-circuits in boreholes with faulty seals. The methodology, applicable to an aquifer-aquitard-aquifer system, involves a series of successive, constant-rate pumping tests in the lower aquifer while determining the leakage rate with a simultaneous nonreactive tracer test. During each pumping step, the tracer is injected under constant concentration and constant hydraulic head from a piezometer in the upper aquifer. If a seal defect exists, the tracer will follow the leak and will be recovered from the pumped water. The theoretical equations relate the leakage rate, the pumping rate, the concentration of the injected tracer, and the recovered concentration. Leakage rates can be determined for any pumping rate. The theory is tested using numerical analysis and a full-scale field test.  相似文献   

18.
The Laplace domain solutions have been obtained for three-dimensional groundwater flow to a well in confined and unconfined wedge-shaped aquifers. The solutions take into account partial penetration effects, instantaneous drainage or delayed yield, vertical anisotropy and the water table boundary condition. As a basis, the Laplace domain solutions for drawdown created by a point source in uniform, anisotropic confined and unconfined wedge-shaped aquifers are first derived. Then, by the principle of superposition the point source solutions are extended to the cases of partially and fully penetrating wells. Unlike the previous solution for the confined aquifer that contains improper integrals arising from the Hankel transform [Yeh HD, Chang YC. New analytical solutions for groundwater flow in wedge-shaped aquifers with various topographic boundary conditions. Adv Water Resour 2006;26:471–80], numerical evaluation of our solution is relatively easy using well known numerical Laplace inversion methods. The effects of wedge angle, pumping well location and observation point location on drawdown and the effects of partial penetration, screen location and delay index on the wedge boundary hydraulic gradient in unconfined aquifers have also been investigated. The results are presented in the form of dimensionless drawdown-time and boundary gradient-time type curves. The curves are useful for parameter identification, calculation of stream depletion rates and the assessment of water budgets in river basins.  相似文献   

19.
Langseth DE  Smyth AH  May J 《Ground water》2004,42(5):689-699
Predicting the future performance of horizontal wells under varying pumping conditions requires estimates of basic aquifer parameters, notably transmissivity and storativity. For vertical wells, there are well-established methods for estimating these parameters, typically based on either the recovery from induced head changes in a well or from the head response in observation wells to pumping in a test well. Comparable aquifer parameter estimation methods for horizontal wells have not been presented in the ground water literature. Formation parameter estimation methods based on measurements of pressure in horizontal wells have been presented in the petroleum industry literature, but these methods have limited applicability for ground water evaluation and are based on pressure measurements in only the horizontal well borehole, rather than in observation wells. This paper presents a simple and versatile method by which pumping test procedures developed for vertical wells can be applied to horizontal well pumping tests. The method presented here uses the principle of superposition to represent the horizontal well as a series of partially penetrating vertical wells. This concept is used to estimate a distance from an observation well at which a vertical well that has the same total pumping rate as the horizontal well will produce the same drawdown as the horizontal well. This equivalent distance may then be associated with an observation well for use in pumping test algorithms and type curves developed for vertical wells. The method is shown to produce good results for confined aquifers and unconfined aquifers in the absence of delayed yield response. For unconfined aquifers, the presence of delayed yield response increases the method error.  相似文献   

20.
Heterogeneity in the physical properties of an aquifer can significantly affect the viability of aquifer storage and recovery (ASR) by reducing the recoverable proportion of low-salinity water where the ambient ground water is brackish or saline. This study investigated the relationship between knowledge of heterogeneity and predictions of solute transport and recovery efficiency by combining permeability and ASR-based tracer testing with modeling. Multiscale permeability testing of a sandy limestone aquifer at an ASR trial site showed that small-scale core data give lower-bound estimates of aquifer hydraulic conductivity (K), intermediate-scale downhole flowmeter data offer valuable information on variations in K with depth, and large-scale pumping test data provide an integrated measure of the effective K that is useful to constrain ground water models. Chloride breakthrough and thermal profiling data measured during two cycles of ASR showed that the movement of injected water is predominantly within two stratigraphic layers identified from the flowmeter data. The behavior of the injectant was reasonably well simulated with a four-layer numerical model that required minimal calibration. Verification in the second cycle achieved acceptable results given the model's simplicity. Without accounting for the aquifer's layered structure, high precision could be achieved on either piezometer breakthrough or recovered water quality, but not both. This study demonstrates the merit of an integrated approach to characterizing aquifers targeted for ASR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号