首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examined the effects of river stage and waste water discharge on the unconfined aquifer near the N nuclear reactor on the U.S. Department of Energy-operated Hanford site in Washington State. River levels were statistically correlated with water-level data from 12 wells.
During the course of this study, water table elevations declined in the study area primarily as a result of a significant decrease in discharge to waste water disposal facilities, A minor contributing factor was the regional decline of the water table caused by decreasing waste water discharges upgradient of the study area.
High-frequency river-level fluctuations (e.g., short-term daily fluctuations) had good correlation with water-level variations in a well approximately 750 feet inland. Low-frequency river-level fluctuations (e.g., long-term seasonal fluctuations) had good correlation with water-level variations in a well approximately 1000 feet from the river shore. Time lags and attenuation generally increased with distance from the river as expected, with the exception of two northern wells. These two wells were relatively more responsive to river-level fluctuations at a greater distance inland from the river. This suggests that hydraulic properties (e.g., hydraulic conductivity) are a control on the aquifer reponses.
During peak river stage in June, the river level rose above water table elevations in several wells implying a temporary reversal in ground water flow direction near the river.  相似文献   

2.
From the mid-1940s through the 1980s, large volumes of waste water were discharged at the Hanford Site in southeastern Washington State, causing a large-scale rise (>20 m) in the water table. When waste water discharges ceased in 1988, ground water mounds began to dissipate. This caused a large number of wells to go dry and has made it difficult to monitor contaminant plume migration. To identify monitoring wells that will need replacement, a methodology has been developed using a first-order uncertainty analysis with UCODE, a nonlinear parameter estimation code. Using a three-dimensional, finite-element ground water flow code, key parameters were identified by calibrating to historical hydraulic head data. Results from the calibration period were then used to check model predictions by comparing monitoring wells' wet/dry status with field data. This status was analyzed using a methodology that incorporated the 0.3 cumulative probability derived from the confidence and prediction intervals. For comparison, a nonphysically based trend model was also used as a predictor of wells' wet/dry status. Although the numerical model outperformed the trend model, for both models, the central value of the intervals was a better predictor of a wet well status. The prediction interval, however, was more successful at identifying dry wells. Predictions made through the year 2048 indicated that 46% of the wells in the monitoring well network are likely to go dry in areas near the river and where the ground water mound is dissipating.  相似文献   

3.
The authors have recently used several innovative sampling techniques for ground water monitoring at hazardous waste sites. Two of these techniques were used for the first time on the Biscayne Aquifer Super-fund Project in Miami, Florida. This is the largest sampling program conducted so far under the U.S. Environmental Protection Agency (EPA) Superfund Program.
One sampling technique involved the use of the new ISCO Model 2600 submersible portable well sampling pump. A compressed air source forces water from the well into the pump casing and then delivers it to the surface (through a pulsating action). This pump was used in wells that could not be sampled with surface lift devices.
Another sampling technique involved the use of a Teflon manifold sampling device. The manifold is inserted into the top of the sampling bottle and a peristaltic pump creates a vacuum to draw the water sample from the well into the bottle. The major advantage of using this sampling technique for ground water monitoring at hazardous waste sites is the direct delivery of the water sample into the collection container. In this manner, the potential for contamination is reduced because, prior to delivery to the sample container, the sample contacts only the Teflon, which is well-known for its inert properties.
Quality assurance results from the Superfund project indicate that these sampling techniques are successful in reducing cross-contamination between monitoring wells. Analysis of field blanks using organic-free water in contact with these sampling devices did not show any concentration at or above the method detection limit for each priority pollutant.  相似文献   

4.
The fate of estrogenic activity in waste water effluent was examined during surface transport and incidental recharge along the Santa Cruz River in Pima County, Arizona. Based on measurement of boron isotopes, the fractional contribution of reclaimed water in surface waters and ground water wells proximate to the river was determined for a contemporary sample set. Estrogenic activity decreased by −60% over the 25 mi length of the river below effluent discharge points in Tucson. In ground water samples obtained from monitoring wells that are proximate to the Santa Cruz River, both dissolved organic carbon ( p = 0.0003) and estrogenic activity ( p = 3 × 10−6) were highly correlated to fractional waste water content. Results indicate that proximate ground water quality is sensitive to incidental recharge of reclaimed water in the Santa Cruz River bed. In a few locations, little attenuation of estrogenic activity was apparent during percolation of effluent in the river channel to well withdrawal points.  相似文献   

5.
The presence of stones, solid waste, and other obstructions can deflect small-diameter driven wells during installation, leading to deviations of the well from its intended position. This could lead to erroneous results, especially for measurements of ground water levels by water level meters. A simple method was developed to measure deviations from the intended positions of well screens and determine correction factors required for proper measurement of ground water levels in nonvertical wells. The method is based upon measurement of the hydrostatic pressure in the bottom of a water column, which is established in the well lube. The method was used to correct water level measurement in wells driven through a landfill site. Errors of up to 27 cm in water level were observed at the landfill site. The correction of the water level measurements had a significant effect on estimated local ground water flow directions.  相似文献   

6.
Geophysical monitoring and evaluation of coastal plain aquifers   总被引:1,自引:0,他引:1  
We use time domain electromagnetic (TDEM) soundings to monitor ground water conditions beneath the coastal plain in eastern North Carolina. The TDEM method measures the earth's response to an induced electromagnetic field. The resulting signal is converted, through a complex inversion process, to apparent resistivity values, which can be directly correlated to borehole resistivity logs. TDEM soundings are used to map the interface between fresh and salt water within coastal aquifers, and estimate depth to basement when siting new monitoring wells. Focused TDEM surveys have identified areas of salt water encroachment caused by high volumes of discharge from local supply wells. Electromagnetic sounding, when used in tandem with the state's network of monitoring wells, is an accurate and inexpensive tool for evaluating fresh water/salt water relationships on both local and regional scales within coastal plain aquifers.  相似文献   

7.
As competition for increasingly scarce ground water resources grows, many decision makers may come to rely upon rigorous multiobjective techniques to help identify appropriate and defensible policies, particularly when disparate stakeholder groups are involved. In this study, decision analysis was conducted on a public water supply wellfield to balance water supply needs with well vulnerability to contamination from a nearby ground water contaminant plume. With few alternative water sources, decision makers must balance the conflicting objectives of maximizing water supply volume from noncontaminated wells while minimizing their vulnerability to contamination from the plume. Artificial neural networks (ANNs) were developed with simulation data from a numerical ground water flow model developed for the study area. The ANN-derived state transition equations were embedded into a multiobjective optimization model, from which the Pareto frontier or trade-off curve between water supply and wellfield vulnerability was identified. Relative preference values and power factors were assigned to the three stakeholders, namely the company whose waste contaminated the aquifer, the community supplied by the wells, and the water utility company that owns and operates the wells. A compromise pumping policy that effectively balances the two conflicting objectives in accordance with the preferences of the three stakeholder groups was then identified using various distance-based methods.  相似文献   

8.
Reinjection of untreated ground water during hydrocarbon recovery operations provides for economical water handling and can accelerate the recovery of the free hydrocarbons. However, considering current regulatory trends, water containing dissolved hydrocarbon constituents would require treatment prior to reinjection into the aquifer. The disposal of coproduced ground water is dependent on several factors, including the volume of water, level of treatment required, and availability of disposal options. Disposal options include reinjection, discharge to surface water, and beneficial use. This paper presents treatment and disposal options for coproduced water during hydrocarbon recovery operations including cost comparisons for a particular case study.
Treatment technologies for oil/water separation, inorganics and heavy metals removal, and dissolved hydrocarbon removal are presented. The primary technologies discussed for dissolved hydrocarbon removal include air stripping, activated carbon adsorption, biological treatment, and combinations of these technologies. Consideration of the use of existing refinery waste water treatment facilities for ground water treatment should be encouraged where applicable. However, separate treatment facilities are usually required because the use of existing on-site treatment facilities is usually not feasible because of the volume of water produced during large recovery projects and the effectiveness of existing treatment facilities. A specific case example is presented with costs for applying different technologies including the use of existing on-site facilities. Treatment costs ranged between 44 cents to $2.82 per thousand gallons (11 cents to 75 cents per thousand liters) of water treated for the specific technologies examined herein.  相似文献   

9.
Cone penetrometer tests and HydroPunch® sampling were used to define the extent of volatile organic compounds in ground water. The investigation indicated that the combination of these techniques is effective for obtaining ground water samples for preliminary plume definition. HydroPunch samples can be collected in unconsolidated sediments and the analytical results obtained from these samples are comparable to those obtained from adjacent monitoring wells. This sampling method is a rapid and cost-effective screening technique for characterizing the extent of contaminant plumes in soft sediment environments. Use of this screening technique allowed monitoring wells to be located at the plume boundary, thereby reducing the number of wells installed and the overall cost of the plume definition program.  相似文献   

10.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

11.
Experimental studies have been carried out in a fractured coastal aquifer of the Salento region (Nardò, Italy), which has been subjected to 12,000 m3/day of treated municipal waste water injected into a natural sinkhole since 1991. The analytical parameters of ground water sampled in 30 monitoring wells in the area down gradient from the sinkhole, taking into account the direction of ground water flow, have been compared before and after injection. The water table mound (1.5 m), the reduction of sea water extent (2 km), and the spreading of injected pollutants were evaluated by means of a mathematical model. The predicted values in the monitoring wells were adjusted to inorganic nitrogen biodegradation using transformation rates developed in laboratory tests. After 10 years, the injection has increased the volume of the available resource for agricultural and drinking water use, without any notable decrease in the preexisting ground water quality. Moreover, to preserve water resources from pollution, the mathematical model allowed the maximum constituent concentrations (standards) in waste water reclamation for recharge to be identified. A precautionary area around the sinkhole was also defined so that withdrawal prohibition could be implemented to avoid risks to human health.  相似文献   

12.
Surface-water and ground-water flow are coupled in the central Everglades, although the remoteness of this system has hindered many previous attempts to quantify interactions between surface water and ground water. We modeled flow through a 43,000 ha basin in the central Everglades called Water Conservation Area 2A. The purpose of the model was to quantify recharge and discharge in the basin's vast interior areas. The presence and distribution of tritium in ground water was the principal constraint on the modeling, based on measurements in 25 research wells ranging in depth from 2 to 37 m. In addition to average characteristics of surface-water flow, the model parameters included depth of the layer of ‘interactive’ ground water that is actively exchanged with surface water, average residence time of interactive ground water, and the associated recharge and discharge fluxes across the wetland ground surface. Results indicated that only a relatively thin (8 m) layer of the 60 m deep surfical aquifer actively exchanges surface water and ground water on a decadal timescale. The calculated storage depth of interactive ground water was 3.1 m after adjustment for the porosity of peat and sandy limestone. Modeling of the tritium data yielded an average residence time of 90 years in interactive ground water, with associated recharge and discharge fluxes equal to 0.01 cm d−1. 3H/3He isotopic ratio measurements (which correct for effects of vertical mixing in the aquifer with deeper, tritium-dead water) were available from several wells, and these indicated an average residence time of 25 years, suggesting that residence time was overestimated using tritium measurements alone. Indeed, both residence time and storage depth would be expected to be overestimated due to vertical mixing. The estimate of recharge and discharge (0.01 cm d−1) that resulted from tritium modeling therefore is still considered reliable, because the ratio of residence time and storage depth (used to calculated recharge and discharge) is much less sensitive to vertical mixing compared with residence time alone. We conclude that a small but potentially significant component of flow through the Everglades is recharged to the aquifer and stored there for years to decades before discharged back to surface water. Long-term storage of water and solutes in the ground-water system beneath the wetlands has implications for restoration of Everglades water quality.  相似文献   

13.
Nitrate-contaminated ground water beneath and adjacent to an intensive swine ( Sus scrofa domesticus ) production facility in the Middle Coastal Plain of North Carolina was analyzed for δ15N of nitrate (δ15N-NO3). Results show that the isotopic signal of animal waste nitrogen is readily identifiable and traceable in nitrate in this ground water. The widespread land application of animal wastes from intensive livestock operations constitutes a potential source of nitrogen contamination to natural water throughout large regions of the United States and other countries. The site of the present study has been suspected as a nitrate contamination source to nearby domestic supply wells and has been monitored for several years by government and private water quality investigators through sampling of observation wells, ditches, and streams. δ15N of nitrate allowed direct identification of animal waste-produced nitrate in 11 of 14 wells sampled in this study, as well as recognition of nitrate contributions from non-animal waste agricultural sources in remaining wells.  相似文献   

14.
This paper summarizes a study to estimate the potential for dry-well drainage of urban runoff to recharge and pollute ground water in Tucson, Arizona. We selected three candidate dry wells for study. At each site we collected samples of runoff, dry-well sediment, vadose-zone sediment, perched ground water, and ground water. Water content data from vadose-zone samples suggest that dry-well drainage has created a transmission zone for water movement at each site. Volatile organic compounds, while undetected in runoff samples, were present in dry-well sediment, perched ground water at one site, and ground water at two sites. The concentrations of volatile organics (toluene and ethylbenzene) in the water samples were less than the corresponding EPA human health criteria. Pesticides were detected only in runoff and dry-well sediment. Lead and chromium occurred in runoff samples at concentrations above drinking water standards. Nickel, chromium, and zinc concentrations were elevated in vadose-zone samples at the commercial site. Of the metals, only manganese, detected at the residential site, exceeded Secondary Drinking Water Standards in ground water. It is concluded that the three dry wells examined during this study are currently not a major source of ground water pollution.  相似文献   

15.
A geographic data model for representing ground water systems   总被引:4,自引:0,他引:4  
The Arc Hydro ground water data model is a geographic data model for representing spatial and temporal ground water information within a geographic information system (GIS). The data model is a standardized representation of ground water systems within a spatial database that provides a public domain template for GIS users to store, document, and analyze commonly used spatial and temporal ground water data sets. This paper describes the data model framework, a simplified version of the complete ground water data model that includes two-dimensional and three-dimensional (3D) object classes for representing aquifers, wells, and borehole data, and the 3D geospatial context in which these data exist. The framework data model also includes tabular objects for representing temporal information such as water levels and water quality samples that are related with spatial features.  相似文献   

16.
The water-soluble fractions of unleaded gasoline, kerosene and diesel fuel were evaluated by U.S. EPA Methods 602, 610, and 625.
Several chemical indicator compounds useful in assessing petroleum contamination of ground water, including benzene, substituted benzenes, n-alkanes, and polynuclear aromatic hydrocarbons, were identified. These were applied to the interpretation of data collected from monitoring wells at gasoline service stations that were undergoing ground water remediation. The chemical indicators are used to identify the likely type(s) of petroleum contamination. Certain hydrocarbons may be unique to specific fuel types.
Gas chromatograms of field sample extracts were compared with chromatograms of laboratory water-soluble fractions (WSFs) and neat fuels (unleaded gasoline, kerosene, and diesel). In some situations, field samples represented water-soluble fractions of the contaminating fuel. In others, a fuel-water agglomeration was indicated, with the chromatograms showing peaks that represented components of both the WSFs and the neat fuels.
The use of both gas chromatography pattern identification and chemical indicators appears to be a viable approach to assessing ground water contamination caused by petroleum products.  相似文献   

17.
As part of an agricultural non-point-source study in the Conestoga River head waters area in Pennsylvania, different methods for collecting ground water samples from a fractured carbonate-rock aquifer were compared. Samples were collected from seven wells that had been cased to bedrock and drilled as open holes to the first significant water-bearing zone. All samples were analyzed for specific conductance, dissolved oxygen, and dissolved-nitrogen species. Water samples collected by a point sampler without pumping the well were compared to samples collected by a submersible pump and by a point sampler after pumping the well. Samples collected by using a point sampler, adjacent to major water-bearing zones in an open borehole without pumping the well, were not statistically different from samples collected from the pump discharge or from point samples collected adjacent to major water-bearing zones after pumping the well. Samples collected by using a point sampler without pumping the well at depths other than those adjacent to the water-bearing zones did not give the same results as the other methods, especially when the water samples were collected from within the well casings. It was concluded that, for the wells at this site, sampling adjacent to major water-bearing zones by using a point sampler without pumping the well provides samples that are as representative of aquifer conditions as samples collected from the pump discharge after reaching constant temperature and specific conductance, and by using a point sampler after pumping the well.  相似文献   

18.
Harvey FE  Sibray SS 《Ground water》2001,39(3):408-421
Across the Great Plains irrigation canals are used to transport water to cropland. Many of these canals are unlined, and leakage from them has been the focus of an ongoing legal, economic, and philosophical debate as to whether this lost water should be considered waste or be viewed as a beneficial and reasonable use since it contributes to regional ground water recharge. While historically there has been much speculation about the impact of canal leakage on local ground water, actual data are scarce. This study was launched to investigate the impact of leakage from the Interstate Canal, in the western panhandle of Nebraska, on the hydrology and water quality of the local aquifer using water chemistry and environmental isotopes. Numerous monitoring wells were installed in and around a small wetland area adjacent to the canal, and ground water levels were monitored from June 1992 until January 1995. Using the water level data, the seepage loss from the canal was estimated. In addition, the canal, the monitoring wells, and several nearby stock and irrigation wells were sampled for inorganic and environmental isotope analysis to assess water quality changes, and to determine the extent of recharge resulting from canal leakage. The results of water level monitoring within study wells indicates a rise in local ground water levels occurs seasonally as a result of leakage during periods when the canal is filled. This rise redirects local ground water flow and provides water to nearby wetland ecosystems during the summer months. Chemical and isotopic results were used to delineate canal, surface, and ground water and indicate that leaking canal water recharges both the surface alluvial aquifer and upper portions of the underlying Brule Aquifer. The results of this study indicate that lining the Interstate Canal could lower ground water levels adjacent to the canal, and could adversely impact the local aquifer.  相似文献   

19.
Abstract

As the urban population of the world increases and demand on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analysing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.  相似文献   

20.
PRO-GRADE: GIS toolkits for ground water recharge and discharge estimation   总被引:2,自引:0,他引:2  
Lin YF  Wang J  Valocchi AJ 《Ground water》2009,47(1):122-128
PRO-GRADE is an ESRI ArcGIS 9.2 plug-in package that consists of two separate toolkits: (1) the p attern r ecognition o rganizer for g eographic i nformation s ystem (PRO-GIS) and (2) the g round water r echarge a nd d ischarge e stimator for GIS (GRADE-GIS). PRO-GIS is a collection of several existing image-processing algorithms into one user interface to offer the flexibility to extract spatial patterns according to the user's needs. GRADE-GIS is a ground water recharge and discharge estimation interface using a mass balance method that requires only hydraulic conductivity, water table, and bedrock elevation data for simulating two-dimensional steady-state unconfined aquifers. PRO-GRADE was developed to assist ongoing assessments of the water resources in Illinois and Wisconsin, and is being used to assist several ground water resource studies in several locations in the United States. The advantage of using PRO-GRADE is to enable fast production of initial recharge and discharge maps that can be further enhanced by using a follow-up ground water flow model with parameter estimation codes. PRO-GRADE leverages ArcGIS to provide a computer-assisted framework to support expert judgment in order to efficiently select alternative recharge and discharge maps that can be used as (1) guidelines for field study planning and decision making; (2) initial conditions for numerical simulation; and (3) screening for alternative model selection and prediction/parameter uncertainty evaluation. In addition, PRO-GRADE allows for more easy and rapid correlation of those maps with other hydrologically relevant geospatial data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号