首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary We review recently obtained results about the velocity structure of the Somma-Vesuvius (Southern Italy) volcanic complex and present an interpretation of structural features, both at local and regional scale, and of the local seismicity. The local structure of Somma-Vesuvius is reviewed, referring to three depth ranges; i.e. shallow (0–5 km), intermediate (5–15 km) and deep (from 15 km to the upper mantle). The shallow velocity structure is inferred by the joint inversion of shot and local earthquake arrival time data. The main feature pointed out by this inversion is a high-velocity anomaly at the crater axis extending down to a depth of about 5 km. This anomaly can be explained with the presence of residual magma crystallised in the shallow conduits, which accumulated during the last eruptive cycles. The local seismicity is strongly clustered around this anomaly, due to the focusing effect of the rigidity contrast. The space-time seismicity pattern at Somma-Vesuvius is the result of the superposition of background seismicity, mainly due to gravitational instability of the volcanic edifice and to small external stress perturbations, with intense episodic earthquake swarms possibly due to magmatic or hydrothermal activity into the shallow system. The velocity structure in the 10–15 km depth range is characterized by the presence of a low-velocity layer, which has been independently confirmed by multi-channel seismic reflection data and P-Sv conversions from teleseismic waveforms. The study of the deep structure was performed by regional tomography with teleseisms; it confirmed the presence of a low-velocity anomaly underneath the volcano, which appears to have roots at greater depths. The regional structure between the Thyrrenian and the Adriatic sea has been inferred by tomographic inversion of teleseismic arrival times. The main result from this study which is very important for geodynamic interpretations is the first evidence for a continuous subducting slab under the Apennines, in an area where previous models hypothesized a slab window. Received March 3, 2000 revised version accepted July 4, 2001  相似文献   

3.
This paper describes an integrated ground deformation and gravity network aimed at monitoring volcano-tectonic movements in the Campanian area (Southern Italy). It covers an area of more than 3000 km2, including the volcanic centres of Somma-Vesuvius, Campi Flegrei caldera and Ischia island. Levelling, EDM and gravity networks, as well as periodic and continuous GPS measurements are carried out. The aim of the network is twofold: monitoring ground deformations in the above mentioned volcanic areas, and studying the complex tectonics of the Campania Plain, a graben-like structure in which the Neapolitan volcanism is concentrated, in relation to the tectonics of the Southern Apennines and of the Tyrrhenian Basin. The monitoring network consists of larger-scale levelling, EDM and GPS networks covering the whole Campania Plain, connected to the relatively stable areas of Apennines, together with smaller scale networks aimed at accurately monitoring the Somma-Vesuvius volcano, one of the most dangerous over the World due to the high degree of urban development. The Somma-Vesuvius is monitored by levelling network, over 200 km long, by periodic EDM and GPS measurements and by a small network of continuously recording GPS receivers. Moreover, high precision gravimetry is also employed to deep the knowledge of the dynamic framework of the area. The main results indicate that Mt. Vesuvius and the island of Ischia are currently quiescent, while Campi Flegrei are subject to significant slow vertical ground movements, known as “bradyseism”. Recently, two large uplifts, both of about 1.8 m, affected the area respectively in 1970–72 and 1982–84.  相似文献   

4.
Summary Major, trace element and isotopic (Sr, Nd, Pb) data are reported for representative samples of interplinian (Protohistoric, Ancient Historic and Medieval Formations) activity of Mt. Somma-Vesuvius volcano during the last 3500 years. Tephra and lavas exhibit significant major, trace element and isotopic variations. Integration of these data with those obtained by previous studies on the older Somma suites and on the latest activity, allows to better trace a complete petrological and geochemical evolution of the Mt. Somma-Vesuvius magmatism. Three main groups of rocks are recognized. A first group is older than 12.000 yrs, and includes effusive-explosive activity of Mt. Somma. The second group (8000–2700 yrs B.P.) includes the products emitted by the Ottaviano (8000 yrs. B.P.) and Avellino (3550 yrs B.P.) plinian eruptions and the interplinian activity associated with the Protohistoric Formation. Ancient Historic Formation (79–472 A.D.), Medieval Formation (472–1139 A.D.) and Recent interplinian activity (1631–1944 A.D.) belong to the third group of activity (79–1944 A.D.). The three groups of rocks display distinct positive trends of alkalis vs. silica, which become increasingly steeper with age. In the first group there is an increase in silica and alkalis with time, whereas an opposite tendency is observed in the two younger groups. Systematic variations are also evident among the incompatible (Pb, Zr, Hf, Ta, Th, U, Nb, Rb, Cs, Ba) and compatible elements (Sr, Co, Cr). REE document variable degrees of fractionation, with recent activity displaying higher La/Yb ratios than Medieval and Ancient Historic products with the same degree of evolution. N-MORB normalized multi-element diagrams for interplinian rocks show enrichment in Rb, Th, Nb, Zr and Sm (> *10 N-MORB). Sr isotope ratios are variable, with Protohistoric rocks displaying 87Sr/86Sr =  0.70711–0.70810, Ancient Historic 87Sr/86Sr = 0.70665–0.70729, and Medieval 87Sr/86Sr = 0.70685–0.70803. Neodymium isotopic compositions in the interplinian rocks show a tendency to become slightly more radiogenic with age, from the Protohistoric (143Nd/144Nd = 0.51240–0.51247) to Ancient Historic (143Nd/144Nd = 0.51245–0.51251). Medieval interplinian activity (143Nd/144Nd: 0.51250–0.51241) lacks meaningful internal trends. All the interplinian rocks have virtually homogeneous compositions of 207Pb/204Pb and 208Pb/204Pb in acid-leached residues (207Pb/204Pb ∼15.633 to 15.687, 208Pb/204Pb ∼38.947 to 39.181). Values of 206Pb/204Pb are very distinctive, however, and discriminate among the three interplinian cycles of activity (Protohistoric: 18.929–18.971, Ancient Historic: 19.018–19.088, Medieval: 18.964–19.053). Compositional trends of major, trace element and isotopic compositions clearly demonstrate strong temporal variations of the magma types feeding the Somma-Vesuvius activity. These different trends are unlikely to be related only to low pressure evolutionary processes, and reveal variations of parental melt composition. Geochemical data suggest a three component mixing scheme for the interplinian activity. These involve HIMU-type and DMM-type mantle and Calabrian-type lower crust. Interaction between these components has taken place in the source; however, additional quantitative constraints must be acquired in order to better discriminate between magma characteristics inherited from the sources and those acquired during shallow level evolution. Received May 5, 2000; revised version accepted June 19, 2001  相似文献   

5.
6.
Summary ?Post-magmatic garnets occur in volcanic breccias at the base of the Neapolitan Yellow Tuff (NYT) formation in the north-western area of the Phlegraean Fields. We report the results of a comprehensive study of these grandites. Garnet is found on the surfaces of tuffaceous blocks or inside their micropores, and is associated with sodalite, sanidine, marialite and amorphous silica. Garnet samples were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), powder and single-crystal X-ray diffraction (XRD) and infrared spectroscopy (IR). SEM observations on morphology showed typical dodecahedral and icositetrahedral habits. EPM analysis showed that they are close to grossular or andradite end members, with only moderate solid solution between them. X-ray study of single crystals showed cubic cell dimensions ao of 11.86 ? (grossular) and 12.04 ? (andradite). IR spectroscopy confirmed the presence of hydroxyls in coexisting garnet and sanidine, 0.06 wt% H2O (garnet) and 0.05–0.07 wt% H2O (sanidine), respectively. Well-crystallized sanidine of an earlier generation showed significantly higher water contents, in the range 0.13–0.23 wt% H2O. Type of occurrence and mineralogical features suggest a post-magmatic (pneumatolitic) genesis for these garnets. This is consistent with the physico-chemical processes linked to the eruptive dynamics of the breccias. Experimental studies of garnet synthesis at 550 °C and 2 kbar provide further support for this concept. Received January 16, 2002; accepted March 18, 2002  相似文献   

7.
Small-scale pyroclastic density currents (PDCs) associated with the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy, were generated by both magmatic and phreatomagmatic explosive fragmentation. The resulting deposits were emplaced under flow boundary conditions dominated by varying combinations of grain interaction, fluid escape and traction processes. Stratigraphic and lithofacies analysis of these PDCs offers a new perspective on the en masse versus progressive aggradation debate for PDC deposition. In particular, the analyses indicate that PDCs were density stratified with a basal underflow dominated by grain interactions. The underflows comprised trains of self-organized granular pulses of variable thickness and magnitude, depending on the overall particle concentration and fluid turbulence. A change in gradient between the upper and lower slopes of the volcano promoted deposition and the different pulses aggraded sequentially (stepwise). In this model each pulse stops en masse and the whole deposit aggrades progressively. Particle concentration, density, mean velocity, and flow height were assessed for the studied PDCs using differaent methods for massive and stratified deposits. The calculated mobility of the flows was 0·2 to 0·3, in the expected range for small-scale PDCs.  相似文献   

8.
Macro- and meso-structural analyses of the Ustica rock formations lead to an interpretation of most of the deformational features that define the structural framework of the island. A regime of sinistral transtension seems to be the best explanation for the most significant fault associations. This regime is consistent with the kinematic model for the Tyrrhenian back-arc-accretionary wedge system proposed by Doglioni (1991). A caldera collapse in the northern part of the island provides the major source of volcanotectonic deformation while cracks, open or filled by clastic and/or volcanic material, were formed by downslope block sliding mostly along the southern coastline. Joints in indurated surge deposits were generated by brittle deformations induced by gravity after deposition, rather than by tectonism.  相似文献   

9.
The detailed mineralogical and structural-crystal-chemical characteristics are reported for the first time for glauconite grains extracted from the fine-platy silty-sandy dolomites at the roof of the lower subformation of the Yusmastakh Formation (Riphean, Anabar Uplift, North Siberia). Based on the complex study (X-ray diffraction, classical chemical analysis, microprobe analysis, IR-spectroscopy, thermogravimetric analysis, scanning electron microscopy with microprobe analysis, and Mössbauer spectroscopy), it was demonstrated that the studied glauconite sample is characterized by unique chemical and structural heterogeneity.The mineral structure consists of micaceous (90%), smectite (6%), and di-trioctahedral chlorite (4%) layers. Mica is classed with Al-glauconite (Al > Fe3+) with elevated Mg content. The elevated Mg mole fraction of the mineral is caused by the presence of Mg-bearing brucite-type interlayers of di-trioctahedral chlorite and the high Mg content in the octahedral sheets of 2: 1 layers. It was first discovered that glauconites are characterized by the heterogeneous distribution of cations over the available trans- and cis-octahedra due to the coexistence of trans- and cis-vacant octahedra and small trioctahedral clusters in octahedral sheets. The distribution of isomorphic cations over the accessible octahedral sites is also heterogeneous due to the tendency of Fe, Mg and Al, Mg cations to segregation and formation of corresponding domains.It was found that structure of the studied glauconite has a specific stacking defect: in addition to the predominant subsequent layers of similar azimuthal orientation according to 1M type (~77%), some layer fragments are rotated at 180° (~15%) and ±120° (8%). The structural-crystal-chemical heterogeneity of the mineral is explained by the fact that its microcrystals grew in the dolomitic sediment under nonequilibrium conditions of the reduction zone of a shallow-water basin with a sufficiently high content of Mg cations, which significantly contributed to the glauconite formation.  相似文献   

10.
Integration of on-land and offshore geomorphological and structural investigations coupled to extensive radiometric dating of co-seismically uplifted Holocene beaches allows characterization of the geometry, kinematics and seismotectonics of the Scilla Fault, which borders the eastern side of the Messina Strait in Calabria, Southern Italy. This region has been struck by destructive historical earthquakes, but knowledge of geologically-based source parameters for active faults is relatively poor, particularly for those running mostly offshore, as the Scilla Fault does. The  30 km-long normal fault may be divided into three segments of  10 km individual length, with the central and southern segments split in at least two strands. The central and northern segments are submerged, and in this area marine geophysical data indicate a youthful morphology and locally evidence for active faulting. The on-land strand of the western segment displaces marine terraces of the last interglacial (124 to 83 ka), but seismic reflection profiles suggest a full Quaternary activity. Structural data collected on bedrock faults exposed along the on-land segment provide evidence for normal slip and  NW-SE extension, which is consistent with focal mechanisms of large earthquakes and GPS velocity fields in the region. Detailed mapping of raised Holocene marine deposits exposed at the coastline straddling of the northern and central segments supplies evidence for two co-seismic displacements at  1.9 and  3.5 ka, and a possible previous event at  5 ka. Co-seismic displacements show a consistent site value and pattern of along-strike variation, suggestive of characteristic-type behaviour for the fault. The  1.5–2.0 m average co-seismic slips during these events document Me  6.9–7.0 earthquakes with  1.6–1.7 ka recurrence time. Because hanging-wall subsidence cannot be included into slip magnitude computation, these slips reflect footwall uplift, and represent minimum average estimates. The palaeoseismological record based on the palaeo-shorelines suggests that the last rupture on the Scilla Fault during the February 6, 1783 Mw = 5.9–6.3 earthquake was at the expected time but it may have not entirely released the loaded stress since the last great event at  1.9 ka. Comparison of the estimated co-seismic extension rate based on the Holocene shoreline record with available GPS velocities indicates that the Scilla Fault accounts for at least  15–20% of the contemporary geodetic extension across the Messina Strait.  相似文献   

11.
Recent studies on flow-type landslides in pyroclastic deposits have been performed to identify potential source areas and the main depositional mechanisms. Interesting methods for mapping landslide susceptibility have also been proposed. Since the potential volume of flow-type landslides is a measure of event magnitude, hence of considerable use in hazard assessment, we propose a method to estimate the potential volume for the morphometric analysis of 213 flow-like landslides occurred in Campania in recent centuries. First, our data show that the height, H, of the detachment and erosion-transport zones (i.e. the difference in height between the top of source area and a point, the first break at the foot of the slope, where the deposition stars to take place and the landslide loses velocity) and the area, A f, of the same zones are linked by a mathematical function. Secondly, only part of the entire thickness of the pyroclastic material on the slope is involved. To define the potential volumes of the flow-type landslides, we analysed slopes, both in volcanic and carbonatic contexts, considering both channelled and unchannelled flow-type landslides. The most susceptible areas are identified by using a landslide-triggering susceptibility map, and then in each case the height H was estimated. This height is the difference in level between the point on the slope with highest susceptibility and the first break at the foot of the slope. Using the statistical correlation between H and A f, both calculated for historical landslides, we evaluate the area of a potential landslide on a slope. Finally, potential volumes are calculated by using A f and a constant thickness of the pyroclastic cover for the whole slope. This method could represent a useful tool to detect the main areas where risk mitigation works are required.  相似文献   

12.
Summary A suite of clinopyroxenite nodules, megacrysis and associated lavas from Somma-Vesuvius, Italy, has been investigated to establish its possible genetic relationships with the leucitebearing lavas of the Roman Region. The clinopyroxenites are essentially composed of clinopyroxene + mica and subordinate olivine, plagioclase, spinels, apatite and glass. The megacrysts are clinopyroxene fragments. The associated lavas are leucite-tephrites and a tephritic leucitite.The mineralogy of the clinopyroxenites is distinctive but gradational to that of the Somma-Vesuvius lavas and reflects subvolcanic crystallization of a silica-undersaturated, mafic magma. The megacrystic clinopyroxene is probably related to the clinopyroxenites.The chemical composition of the clinopyroxenites shows strong affinites to that of the Somma-Vesuvius lavas and corresponds to leucite basanite compositions. Interstitial glass in the clinopyroxenites represents a residual liquid from clinopyroxenite crystallization. This glass approaches the chemical composition of the Somma tephrites.The experimental melting of two clinopyroxenites at 1 atm demonstrates that the essential assemblage of the Somma-Vesuvius lava, leucite + clinopyroxene, may develop from basanite compositions where olivine disappears by reaction with the liquid to form clinopyroxene. It is concluded that the clinopyroxenites represent basanitic magma crystallized at depth and that the Somma-Vesuvius leucite-bearing lavas are potential derivatives of this magma.
Petrologie von Klinopyroxenit-Auswürflingen von Somma-Vesuv und ihre genetische Bedeutung
Zusammenfassung Leucit-Tephrite und tephritische Leucitite der Romana enthalten Klinopyroxenit-Einschlüsse sowie Kristalle von Klinopyroxen, Glimmer, und untergeordnet Olivin, Plagioklas, Spinell, Apatit und Glas. Die genetischen Beziehungen zwischen Laven und Einschlüssen wurden an Hand der Ergebnisse petrologischer und geochemischer Untersuchungen überprüft.Die Mineralogie der Klinopyroxenite kann mit der der Somma-Vesuv-Laven korreliert werden und weist auf subvulkanische Kristallisation eines Si-untersättigten, mafischen Magmas hin.Die chemische Zusammensetzung der Klinopyroxenite zeigt deutliche Beziehungen zu den Laven von Somma-Vesuv und entspricht einem leucit-basanitischen Typ. Restschmelze der Klinopyroxenit-Kristallisation ist als Glas auf der Intergranulare erhalten. Die Zusammensetzung dieser Gläser ähnelt der von Somma-Tephriten.Schmelzversuche an zwei Klinopyroxeniten bei 1 atm zeigen, daß die wichtigste Mineralassoziation der Somma-Vesuv-Laven, Leucit und Klinopyroxen, aus einer basanitischen Zusammensetzung abzuleiten sind. Olivin verschwindet dabei durch Reaktion mit der Schmelze und Klinopyroxen wird gebildet. Die Untersuchungen lassen erkennen, daß die Klinopyroxenite Kristallisationsprodukte in der Tiefe erstarrter basanitischer Magmen sind, und daß die leucitführenden Magmen von Somma-Vesuv als mögliche Abkömmlinge dieser Magmen zu sehen sind.


With 3 Figures  相似文献   

13.
Summary Middle Triassic volcanic rock outcrops in the Mount Agnello area (Fiemme Valley, Italy) are examined in this study. Chemical analyses based on main and trace elements (Rb, Sr, Zr, Y, Nb) allow this volcanism to be defined as shoshonitic. The amphiboles, which occur with thick opacitic rims, were determined as ferroan pargasites. They were often found in volcanites of calcalkaline and/or shoshonitic associations. Consequently, this volcanism can be associated with a newly orogenized area undergoing stabilization. These data support the more recent studies on the mid-Triassic volcanism in the Southern Alps and underline the particular position of this magmatism in the tectonic evolution of this area.
Les roches volcaniques de l'aire de Mont Agnello (Vallèe de Fiemme, Italie): Une contribution à la connaissance du volcanisme du trias moyen des Alpes Meridionales
Résumé Sont examinées les volcanites du Trias moyen affleurantes dans l'aire de Mont Agnello (Vallèe de Fiemme, Italie). Les déterminations du chimisme, en particulier celles regardant les éléments en traces (Rb, Sr, Zr, Y, Nb), revèlent pour ce volcanisme une affinité shoshonitique qui est bien associable à une aire de recente orogenèse en voie de stabilisation. On a aussi analysé l'amphibole, present dans ces roches, caracterisé par d'epais bords de réaction et on l'à reconnu comme une pargasite riche en fer. Ces amphiboles ont été retrouvé fréquemment dans des volcanites d'association calcoalcaline et/ou shoshonitique.


With 4 Figures  相似文献   

14.
15.
The magmatic evolution of two eruptive episodes at Campi Flegrei (Italy) has been investigated using phase equilibria modeling (MELTS) and data from melt inclusions (MIs) in phenocrysts from the Fondo Riccio and Minopoli 1 eruptions. Assuming that isobaric fractional crystallization of a mantle-derived parental magma is the dominant petrogenetic process, major element evolution and corresponding changes in the physical and thermodynamic properties of the magma bodies from which Fondo Riccio and Minopoli1 magmas were erupted can be tracked. Fondo Riccio parental magma was trachyandesitic, approximated by the composition of FR-C1-O2-M1, which evolved mainly through fractional crystallization at low pressure (P?≈?0.15?GPa, ≈ 7?km depth), along the QFM, QFM?+?1 oxygen buffer with an initial dissolved H2O content of ~3?wt%. Minopoli1 parental magma was trachyandesitic, approximated by the chemistry of Mi1-C1-O5-M1, evolved through fractional crystallization at P?≈?0.3?GPa (≈ 12?km depth), with oxygen fugacity along QFM?+?1buffer and initial H2O content of?~?2 wt%. The relationship between melt fraction and T reveals for Fondo Riccio the presence of a pseudo-invariant temperature at which the physical properties of melt change abruptly. The net effect of these changes is to drive the system towards dynamic instability, which it is suggested to be the trigger mechanism for the eruptions.  相似文献   

16.
An extensive petrochemical and geochronological study of the volcanic complex of the island of Ischia has been made in order to assess the variation of the magmatic characteristics through time. The major and trace element chemistry and the mineralogy of more than 40 samples, coupled with their K/Ar ages, reveal four phases of volcanic activity: (1) prior to 150000 years B.P. — alkali-trachyte pyroclastic products; (2) 150000–75000 years B.P. — alkali-trachytic to phonolitic lava domes and minor pyroclastics; (3) 55000–20000 years B.P. — great pyroclastic emissions of trachytic and alkali-trachytic composition; (4) 10000 years B.P.-1302 A.D. — mainly lava flows, ranging from alkali-trachytes to magmas between basalt and latite. In spite of a relatively monotonous major element chemistry, the trace element contents of the rocks show a large variation (up to a factor of 9). Comparison of glass compositions with the modal phases permits us to distinguish at least four clearly established supplies of new magma to a shallow chamber. After the first three events, the magmas possibly evolved in a closed system controlled by fractional crystallization with at least one single eutectic crystallization occurring afterwards (sodalite, nepheline and alkali feldspar+aegirine and salite). During the fourth event, increasing proportions of a less evolved liquid, suddenly charged with mafic xenocrysts, contaminated the residual liquid in the chamber and generated through time more and more basic products. Their high Th/Ta and Th/Hf ratios and Ta, Nb and Ti negative anomalies suggest an orogenic tendency of the recent volcanic activity on the island of Ischia.  相似文献   

17.
On 15 February 2010, a landslide of great dimensions occurred at Maierato (Calabria, Southern Italy) after a long rainy period. Although the zone was continuously affected by ground movements especially during the wet seasons, no monitoring system was installed before the occurrence of the landslide. However, many photos and two videos were taken during the failure process of the slope. In the present study, the available images are used to reconstruct the kinematics of the landslide. In addition, a finite element analysis is performed to define the main factors of triggering and to interpret the failure mechanism of the slope. This analysis is also based on the data from a site investigation carried out after the landslide to characterise the involved soils from a geotechnical viewpoint. The analysis also accounts for the strain-softening behaviour of some soils. The results have shown that the Maierato landslide was the reactivation of a pre-existing landslide body, which was caused by a significant increase in groundwater level.  相似文献   

18.
A marked curvature of crustal structures characterizes the Calabrian arc in Southern Italy. The overall deformation of the arc seems mostly controlled by the Sangineto shear zone to the north and by the Mt. Kumeta-Alcantara shear zone to the south, which both separate different crustal sectors. Other important fault systems cut the Iblean foreland (Scicli-Ragusa fault zone) and many others dissect the crystalline units of Central Calabria. Neotectonic structural analyses have been carried out in order to recognize the character of the Plio-Pleistocene tectonic phases and their bearing on the present configuration of the arc.After the Middle Miocene extensional phase an Early-Middle Pliocene compressional phase is detectable in many parts of the arc. Right- and left-lateral displacements respectively characterize the Mt. Kumeta-Alcantara and Sangineto shear zones and right-lateral movements are also detectable within the Scicli-Ragusa fault system.Finally, the Pleistocene tensional regime seems to have been controlled mainly by uplift. The structural and neotectonic data allow us to propose a model of the recent evolution of the arc, which was bent mainly as a result of opposed wrench faulting along the Sangineto and Mt. Kumeta-Alcantara shear zones.  相似文献   

19.
Summary The petrophysical parameters Density (p), Susceptibility (SUS), as well as Natural Remanent Magnetisation (NRM) and Koenigsberger ratio (Qn) were measured on approx. 2600 core samples (magmatic and a few metamorphic rocks) from the Southern Bohemian Massif. These and associated data have been organized into primary and subsidiary dBASE IV databases. The quantity and kind of information now available through the databases are described.40 sampled types of rocks have been statistically analysed and a detailed delimitation of different rocks as well as their varieties is attempted with the aid of various graphic software.The lowest susceptibility values (SUS < 0.1 × 10–3 SI) were measured for the leucocratic Altenberg and Haibach granites, above it for the acid Eisgarn granite and for aplites. The only fine grained granite with a higher average (M = l.32 × 10–3 SI) than the other granites is the Schlägl granite.Average values of NRM vary over a range of 104 mA/m. The Altenberg and Haibach granites (fine-to medium-grained, two-mica leucogranites) are again (see SUS) in the group with the lowest values (< 1 mA/m). The average values of coarse-grained, older synorogenic granites (Finger andHöck, 1986), Weinsberg and Engerwitzdorf (medium-to coarse grained) granites, Schlieren granite and Rastenberg granodiorite are generally uniform (< 5 mA/m), with the exception of the stronger remanent magnetism of the Schlieren granite (25 mA/m).The Qn, values of all investigated coarse grained granites are less than 0.25 (exception: Schlieren granite) whereas the fine-middle grained granites Peuerbach, Schaerding, Schrems and the fine grained granites in general all have Qn > 1.The densities of all studied granite types vary only from 2600 kg/m3 to the upper limit of 2710 kg/m3 (average of rock types). Therefore consideration of only one petrophysical parameter does frequently not suffise for characterisation of a rock type. However, a combined study of NRM-SUS or p-SUS proved to be useful in many cases e.g. petrophysical distinction between Schrems granite and Mauthausen granite.
Petrophysikalische Untersuchungen in der südlichen Böhmischen Masse (Österreich): Daten-Akquisition, -Organisation und -Interpretation
Zusammenfassung Die petrophysikalischen Parameter Dichte (p), Suszeptibilität (SUS), sowie Natürliche Remanente Magnetisierung (NRM) und Königsberger Faktor (Qn) wurden an rund 2600 Bohrkernen (Magmatite und einige Metamorphite) aus der Böhmischen Masse ermittelt. Diese und damit im Zusammenhang stehende Daten wurden in einer dBASE IV Hauptdatenbank und gekoppelten Nebendatenbestanden organisiert. Es wird die Art von Information, die über die Datenbank nun zugänglich ist näher erläutert. 40 beprobte Gesteinstypen werden einer statistischen Analyse unterzogen und unter zu Hilfenahme diverser Graphiksoftware wird eine detailliertere Abgrenzung der einzelnen Gesteine und ihrer Varietaten versucht.Die geringsten Suszeptibilitätswerte (SUS < 0.1 × 10–3 SI) wurden an Proben der leukokraten Altenberger und Haibacher Granite, darüber hinaus auch an Kernen des sauren Eisgarner Granits und der Aplite gemessen. Der einzige feinkörnige Granit mit einem überdurchschnittlichen Mittelwert (M = 1.32 × 10–3 SI) im Vergleich zu anderen Graniten ist der Schlägl Granit.Die errechneten Mittelwerte der NRM streuen über einen Bereich von 104 mA/m. Der Altenberger und der Haibacher Granit (fein- bis mittelkörnige Zweiglimmergranite) weisen auch hier wieder die geringsten Werte (< 1 mA/m) auf. Die Gruppe der grobkörnigen, älteren synorogenen Granite (Finger undHöck, 1986), nämlich Weinsberger und Engerwitzdorfer (mittel- bis grobkörnig), Schlierengranit und Rastenberger Granodiorit bleiben mit ihren NRM Werten unter 5 mA/m mit Ausnahme des offensichtlich stärker remanent magnetisierten Schlierengranits (25 mA/m).Alle untersuchten grobkörnigen Granite weisen Qn Werte < 0.25 (Ausnahme: Schlierengranit) auf, während hingegen die fein- bis mittelkörnigen Peuerbacher, Schärdinger und Schremser Granit, sowie die Feinkorngranite im allgemeinen, alle Qn > 1 erreichen.Die Dichten der verschiedenen Granite variieren nur von 2600 kg/m3 bis 2710 kg/m3 (Gesteinsmittelwerte). Dies zeigt, daß die Betrachtung nur eines einzigen petrophysikalischen Parameters in vielen Fällen nicht alleine ausreicht um ein Gestein petrophysikalisch eindeutig zu bestimmen. Vielmehr stellte sich für eine Charakterisierung der Gesteine eine kombinierte Untersuchung von NRM-SUS oder p-SUS oft als zielführend heraus, wie z.B. im Falle des Schremser Granits und des Mauthausener Granits.


With 15 Figures  相似文献   

20.
Arsenic occurrence in groundwater near the Cimino-Vico volcanoes (central Italy) was analysed considering the hydrostratigraphy and structural setting and the shallow and deep flows interacting within the Quaternary volcanics. Groundwater is the local source of drinking water. As documented in the past, arsenic in the groundwater has become a problem, and the European maximum allowable contaminant level was recently lowered to 10 μg/L. Chemical analyses of groundwater were conducted, sampled over an area of about 900 km2, from 65 wells and springs representative of the volcanic aquifer and thermal waters. Considering the type of aquifer, the nature of the aquifer formation and its substratum, the hydrochemical data highlight that the arsenic content of the groundwater is mainly connected with the hydrothermal processes in the volcanic area. Thermal waters (54–60°C) fed from deep-rising fluids show higher arsenic concentrations (176–371 μg/L). Cold waters sampled from the volcanic aquifer are characterized by a wide variability in their arsenic concentration (1.6–195 μg/L), and about 62% exceed the limit of 10 μg/L. Where the shallow volcanic aquifer is open to deep-rising thermal fluids, relatively high arsenic concentrations (20–100 μg/L) are found. This occurs close to areas of the more recent volcano-tectonic structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号