首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CRPG (Nancy, France) has prepared secondary reference materials for Li isotope measurements by mixing 7Li or 6Li spikes and either L-SVEC or IRMM-016 certified reference materials to produce solutions having a known Li concentration and isotopic composition. The Li7-N and Li6-N solution samples (1.5 mol l−1 HNO3) have nominal δ7Li isotopic compositions of 30.1‰ and -9.7‰ respectively relative to L-SVEC and concentrations of 100 mg l−1. Repeated measurement of these samples using the QUAD-ICP-MS at the CRPG yielded δ7Li of 30.4 ± 1.1‰ (n = 13) and -8.9 ± 0.9‰ (n = 9) at the 2s level of confidence. An additional LiCl-N solution was measured and yielded a delta value of 9.5 ± 0.6‰ (n = 3). Identical results were obtained at the BRGM (Orléans, France) from determinations performed with a Neptune MC-ICP-MS (30.2 ± 0.3‰, n = 89 for the Li7-N, -8.0 ± 0.3‰, n = 38 for the Li6-N and 10.1 ± 0.2‰, n = 46 for LiCl-N at the 2s level of confidence). The deviation of measured composition relative to the nominal value for the Li6-N solution might be explained by either contamination during preparation or an error during sample weighing. These secondary reference materials, previously passed through ion exchange resin or directly analysed, may be used for checking the accuracy of Li isotopic measurements over a range of almost 40‰ and will be available to the scientific community upon request to J. Carignan or N. Vigier, CRPG.  相似文献   

2.
Magnesium Isotope Compositions of Natural Reference Materials   总被引:1,自引:0,他引:1  
This study presents a chemical protocol for the separation of Mg that is particularly adapted to alkali‐rich samples (granite, soil, plants). This protocol was based on a combination of two pre‐existing methods: transition metals were first removed from the sample using an AG‐MP1 anion‐exchange resin, followed by the separation of alkalis (Na, K) and bivalent cations (Ca2+, Mn2+ and Sr2+) using a AG50W‐X12 cation‐exchange resin. This procedure allowed Mg recovery of ~ 10 0 ± 8%. The [Σcations]/[Mg] molar ratios in all of the final Mg fractions were lower than 0.05. The Mg isotope ratios of eleven reference materials were analysed using two different MC‐ICP‐MS instruments (Isoprobe and Nu Plasma). The long‐term reproducibility, assessed by repeated measurements of Mg standard solutions and natural reference materials, was 0.14‰. The basalt (BE‐N), limestone (Cal‐S) and seawater (BCR‐403) reference materials analysed in this study yielded δ26Mg mean values of ?0.28 ± 0.08‰, ?4.37 ± 0.11‰ and ?0.89 ± 0.10‰ respectively, in agreement with published data. The two continental rocks analysed, diorite (DR‐N) and granite (GA), yielded δ26Mg mean values of ?0.50 ± 0.08‰ and ?0.75 ± 0.14‰, respectively. The weathering products, soil (TILL‐1) and river water (NIST SRM 1640), gave δ26Mg values of ?0.40 ± 0.07‰ and ?1.27 ± 0.14‰, respectively. We also present, for the first time, the Mg isotope composition of bulk plant and organic matter. Rye flour (BCR‐381), sea lettuce (Ulva lactuva) (BCR‐279), natural hairgrass (Deschampsia flexuosa) and lichen (BCR‐482) reference materials gave δ26Mg values of ?1.10 ± 0.14‰, ?0.90 ± 0.19‰, ?0.50 ± 0.22‰ and ?1.15 ± 0.27‰ respectively. Plant δ26Mg values fell within the range defined by published data for chlorophylls.  相似文献   

3.
锂同位素研究是非传统稳定同位素地球化学研究的前沿,已广泛应用于从地表到地幔的岩石圈及流体等固体地球科学的研究领域。准确测定锂同位素比值是应用该同位素体系的前提。本文报道了国际上7种常用地质标准物质(BHVO-2、JB-2、BCR-2、AGV-2、NKT-1、L-SVEC、IRMM-016)的锂同位素组成数据。分析中采用硝酸-氢氟酸混合酸消解岩石标准样品,通过3根阳离子交换树脂(AG50W-X8,200~400目)填充的聚丙烯交换柱和石英交换柱对锂进行分离富集,利用Neptune型多接收器电感耦合等离子体质谱(MC-ICPMS)测定锂同位素比值,使用标准-样品交叉法(SSB)校正仪器的质量分馏。实验得到这7种常用地质标准物质的锂同位素组成与测试精度(2SD)分别为:δ7LiBHVO-2—L-SVEC=4.7‰±1.0‰(n=53),δ7LiJB-2—L-SVEC=4.9‰±1.0‰(n=20),δ7LiBCR-2—L-SVEC=4.4‰±0.8‰(n=8),δ7LiAGV-2—L-SVEC=6.1‰±0.4‰(n=14),δ7LiNKT-1—L-SVEC=9.8‰±0.2‰(n=3),δ7LiL-SVEC—L-SVEC=-0.3‰±0.3‰(n=10),δ7LiIRMM-016—L-SVEC=0.0‰±0.5‰(n=10),这些数据在误差范围内与国际上已发表的数据一致。Li同位素分析精度可以达到大约0.5‰,长期的分析精度即外部重现性≤±1.0‰,达到了国际同类实验室水平。7种常用地质标准物质的锂同位素组成数据的发表为锂同位素研究提供了统一的标准,使地质样品的锂同位素数据的质量监控成为可能。在基质效应的研究中,使用不同量的IRMM-016配制的标准溶液过柱,深入探讨了样品量对锂同位素测定值的影响,结果表明,在现有测试精度下,只要分析样品的锂含量达到100μg/L,且不超过树脂的承载量,样品的锂同位素组成在误差范围内与真值吻合,样品量的大小不影响锂同位素测定结果的准确性。  相似文献   

4.
Calcium isotopic compositions of sixteen Ca‐bearing USGS geological reference materials including igneous and sedimentary rocks are reported. Calcium isotopic compositions were determined in two laboratories (GPMR, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan; and CIG, Centre for Isotope Geochemistry, University of California, Berkeley) using the 42Ca‐48Ca double‐spike technique by thermal ionisation mass spectrometry. As opposed to common cation exchange resin, a micro‐column filled with Ca‐selective resin (DGA resin) was used in order to achieve high recovery (> 96%) and efficient separation of Ca from the sample matrix. The intermediate measurement precision was evaluated at 0.14‰ (2s) for δ44/40CaSRM915a at GPMR, based on replicate measurements of pure Ca reference material NIST SRM 915a, NIST SRM 915b and seawater. Overall, the measurement uncertainties in both laboratories were better than 0.15‰ at the 2s level. Result validation was carried out for all available data sets. The Ca isotopic compositions of USGS reference materials are not only in agreement between GPMR and CIG, but also in agreement with previously published data within quoted uncertainties. The comprehensive data set reported in this study serves as a reference for both quality assurance and interlaboratory comparison of high precision Ca isotopic study.  相似文献   

5.
The Li isotope ratios of four international rock reference materials, USGS BHVO-2, GSJ JB-2, JG-2, JA-1 and modern seawater (Mediterranean, Pacific and North Atlantic) were determined using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). These reference materials of natural samples were chosen to span a considerable range in Li isotope ratios and cover several different matrices in order to provide a useful benchmark for future studies. Our new analytical technique achieves significantly higher precision and reproducibility (< ± O.3%o 2s) than previous methods, with the additional advantage of requiring very low sample masses of ca . 2 ng of Li.  相似文献   

6.
The interest in the study of gallium (Ga) stable isotope fractionation in low‐ and high‐temperature environments has increased significantly in the last few years. However, a unified reference material (RM) is still lacking for the Ga isotope research community, which hinders interlaboratory comparison between different groups. Consequently, certification of Ga isotopic reference materials for interlaboratory comparison is of high priority. In this study, Ga isotope ratio data for ten geological RMs including silicates, shales and ferromanganese nodules, and two pure Ga RMs including NIST SRM 994 and NIST SRM 3119a reported by three different groups, were determined by MC‐ICP‐MS. Sample matrices of geological RMs were separated by a two‐column separation method with the use of AG MP‐1M and AG 50‐X8 resin, separately, and quantitative recoveries of > 99% Ga were obtained for all geological RMs. Instrumental mass bias was corrected by the combined calibrator‐sample bracketing and internal normalisation model. Validation of the proposed method was performed by analysing synthetic solutions. After normalisation of all available δ71Ga data of geological RMs to a single Ga RM, results obtained in our study are in agreement with previously reported results.  相似文献   

7.
In this study, the Cd isotopic composition of various geological reference materials and anthropogenic samples was investigated. The measurements were made by multicollector ICP-MS and instrumental mass fractionation was controlled using a "sample-standard bracketing" technique. Cadmium isotopic data are reported relative to an internal Cd solution (Cd Spex) and expressed as the 114 Cd/110Cd delta value. Two other Cd solutions (Prolabo and JMC) were analysed and yielded the same 0% delta value. A fractionated Cd metal sample (Münster Cd) was used as a secondary reference material for Cd isotopic measurements and we obtained a 114 Cd/110 Cd delta value of 4.48% relative to Cd Spex solution. As opposed to multi-stage Cd purification previously published in the literature, a new one step anionic exchange purification using dilute HCl for the analysis of Cd isotopes in geological samples was developed. This method enabled a high recovery (> 95%) and effective separation of the sample matrix to be achieved. The long-term external reproducibility was evaluated at 0.12% (2 standard deviations) for the 114 Cd/110Cd ratio, based on reference solutions and replicated measurements of samples over one year. The variation of Cd isotopic composition of natural terrestrial samples is restricted to a small range of 0.4%, which is similar to previously reported results. In contrast, large variations of Cd isotopic composition were found for anthropogenic samples with values as low as −0.64% for a dust sample issued from a lead smelter and values as high as +0.50% for NIST SRM 2711 (metal-rich soil). These variations are 10 times larger than the reproducibility and suggest that Cd isotopes can be useful as tracers of anthropogenic sources of Cd in the environment.  相似文献   

8.
We report here a newly developed method for measurement of Li isotopes by use of multi-collector ICP-MS (Neptune) allowing rapid and high precision determination of Li isotope ratios at low levels of lithium (15–20 ng). The lithium reference sample solution IRMM-016 was analysed over a period of ten months with an external reproducibility of 0.24% (2s, n = 52). Chemical separation of Li from matrix was performed on the seawater sample IRMM BCR-403, for which a mean δ7Li value of + 31.0 ± 0.1 % (2s/√n, n = 31) was obtained. This mean value is in good agreement with those previously published for other seawater samples. BCR-403 seawater being readily available, we propose that this seawater sample be used as a reference sample for Li isotope measurements.  相似文献   

9.
The advent of multiple collector-inductively coupled plasma-mass spectrometry has provided an impetus to the study of isotope abundance variations in natural materials. In particular, the study of "non-traditional" stable isotopes has revealed isotope fractionation variations caused by a range of physiochemical and biological mechanisms. The magnitude of these variations may be < 1 per mil per mass unit, but are significant in terms of the experimental uncertainties involved, provided rigorous mass spectrometric protocols are followed. The double spike technique can be used effectively to evaluate isotope fractionation effects for both multiple collector-inductively coupled plasma-mass spectrometry and thermal ionisation mass spectrometry. The demanding nature of this research implies the need for internationally-accepted reference materials so that interlaboratory comparisons can be made with confidence. At present, isotopically certified reference materials are unavailable for many elements, including Cu, Zn, Mo and Cd, and it is important that this situation be rectified as soon as practicable. Until such time as isotopically certified reference materials become available for every element, stable isotope geochemists should adopt a common reference material as the standard for each element so that rigorous interlaboratory comparisons can be made.  相似文献   

10.
In this study, the accuracy and the precision corresponding to Li isotopic measurements of low level samples such as marine and coastal carbonates are estimated. To this end, a total of fifty‐four analyses of a Li‐pure reference material (Li7‐N) at concentrations ranging from 1 to 6 ng ml?1 were first performed. The average δ7Li values obtained for solutions with and without chemical purification were 30.3 ± 0.4‰ (2s,= 19) and 30.2 ± 0.4‰ (2s,= 36), respectively. These results show that the chosen Li chemical extraction and purification procedure did not induce any significant isotope bias. Two available carbonate reference materials (JCt‐1 and JCp‐1) were analysed, yielding mean δ7Li values of 18.0 ± 0.27‰ (2s,= 6) and 18.8 ± 1.8‰ (2s,= 9), respectively. Small powder aliquots (< 15 mg) of JCp‐1 displayed significant isotope heterogeneity and we therefore advise favouring JCt‐1 for interlaboratory comparisons. The second part of this study concerns the determination of δ7Li value for biogenic carbonate samples. We performed a total of twenty‐nine analyses of seven different tropical coral species grown under controlled and similar conditions (24.0 ± 0.1 °C). Our sample treatment prior to Li extraction involved removal of organic matter before complete dissolution in diluted HCl. Our results show (a) a constant δ7Li within each skeleton and between the different species (δ7Li = 17.3 ± 0.7‰), and (b) a Li isotope fractionation of ?2‰ compared with inorganic aragonite grown under similar conditions. Comparison with literature data suggests a significant difference between samples living in aquaria and those grown in natural conditions. Finally, we investigate ancient (fossil) carbonate material and foraminifera extracted from marine sedimentary records. Different leaching procedures were tested using various HCl molarities. Results indicate that carbonate preferential dissolution must be carried out at an acid molarity < 0.18 mol l?1. Possible contamination from silicate minerals can be verified using the Al/Ca ratio, but the threshold value strongly depends on the carbonate δ7Li value. When the silicate/carbonate ratio is high in the sediment sample (typically > 2), contamination from silicates cannot be avoided, even at low HCl molarity (? 0.1 mol l?1). Finally, bulk carbonate and foraminifera extracted from the same core sample exhibited significant discrepancies: δ7Li values of foraminifera were more reproducible but were significantly lower. They were also associated with lower Sr/Ca and higher Mn/Ca ratios, suggesting a higher sensitivity to diagenesis, although specific vital effects cannot be fully ruled out.  相似文献   

11.
Iron, Cu and Zn stable isotope systems are applied in constraining a variety of geochemical and environmental processes. Secondary reference materials have been developed by the Institute of Geology, Chinese Academy of Geological Sciences (CAGS), in collaboration with other participating laboratories, comprising three solutions (CAGS‐Fe, CAGS‐Cu and CAGS‐Zn) and one basalt (CAGS‐Basalt). These materials exhibit sufficient homogeneity and stability for application in Fe, Cu and Zn isotopic ratio determinations. Reference values were determined by inter‐laboratory analytical comparisons involving up to eight participating laboratories employing MC‐ICP‐MS techniques, based on the unweighted means of submitted results. Isotopic compositions are reported in per mil notation, based on reference materials IRMM‐014 for Fe, NIST SRM 976 for Cu and IRMM‐3702 for Zn. Respective reference values of CAGS‐Fe, CAGS‐Cu and CAGS‐Zn solutions are as follows: δ56Fe = 0.83 ± 0.07 and δ57Fe = 1.20 ± 0.13, δ65Cu = 0.57 ± 0.06, and δ66Zn = ?0.79 ± 0.12 and δ68Zn = ?1.65 ± 0.24, respectively. Those of CAGS‐Basalt are δ56Fe = 0.15 ± 0.07, δ57Fe = 0.22 ± 0.10, δ65Cu = 0.12 ± 0.08, δ66Zn = 0.17 ± 0.13, and δ68Zn = 0.34 ± 0.26 (2s).  相似文献   

12.
We report a new approach to conduct fast and accurate lithium isotope ratio measurements by MC-ICP mass spectrometry after wet chemical sample preparation. In contrast to most previously published methods our MC-ICP-MS set-up did not use a desolvating system to achieve appropriate ion beam intensities and, therefore, was less affected by matrix-induced shifts of the instrumental mass bias. As the total lithium background and build-up in the sample introduction system was low, previous sample residues could be washed out by an extended uptake of the new sample. Elimination of a nitric acid rinse step increased the sample throughput by a factor of two and allowed the instrumental mass bias drift to be tracked more precisely. δ7Li values of powdered silicate rock reference materials and seawater obtained in this study revealed good accuracy and an overall analytical uncertainty of typically 0.5‰ (2s). On the basis of a comparison between our lithium isotope data and compiled literature data, we recommend preliminary average δ7Li values for seawater (+30.8‰) and several silicate rock reference materials (BHVO-1: +5.0‰; JA-1: +5.6‰; JB-2: +4.8‰). The compilation of published δ7Li values for seawater suggests that the observed large lithium isotope differences are due to inter-method and/or interlaboratory bias. Most recently published δ7Li values for seawater show little variation and confirm a constant lithium isotope composition (at the sub ‰ level) of seawater in well mixed ocean basins.  相似文献   

13.
We present a concerted international effort to cross-calibrate five synthetic Th isotope reference materials (UCSC Th "A", OU Th "U", WUN, IRMM-35 and IRMM-36), and six rock reference materials (UCSC TML, Icelandic ATHO, USGS BCR-2, USGS W-2, USGS BHVO-2, LV18) using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). We then compare our new values with a compilation of literature mass spectrometric data for these reference materials and derive recommended "consensus"230Th/232Th values for each. We also present isotope dilution U and Th concentration data for four rock reference materials (UCSC TML, Icelandic ATHO, USGS BCR-2, USGS W-2).  相似文献   

14.
This paper presents an adapted anion exchange column chemistry protocol which allowed separation of high-purity fractions of Cu and Zn from geological materials. Isobaric and non-spectral interferences were virtually eliminated for consequent multiple-collector ICP-MS analysis of the isotopic composition of these metals. The procedure achieved ∼ 100% recoveries, thus ensuring the absence of column-induced isotopic fractionation. By employing these techniques, we report isotopic analyses for Cu and Zn from five geological reference materials: BCR-027 blende ore (BCR), δ65Cu = 0.52 ± 0.15‰ (n = 10) and δ66Zn = 0.33 ± 0.07‰ (n = 8); BCR-030 calcined calamine ore (BCR), δ66Zn = -0.06 ± 0.09‰ (n = 8); BCR-1 basalt (USGS), δ66Zn = 0.29 ± 0.12‰ (n = 8); NOD-P-1 manganese nodule (USGS), δ65Cu = 0.46 ± 0.08‰ (n = 10) and δ66Zn = 0.78 ± 0.09‰ (n = 9); SU-1 Cu-Co ore (CCRMP), δ65Cu = -0.018 ± 0.08‰ (n = 10) and δ66Zn = 0.13 ± 0.17‰ (n = 6). All uncertainties are ± 2s; copper isotope ratios are reported relative to NIST SRM-976, and zinc isotope ratios relative to the Lyon-group Johnson Matthey metal (batch 3-0749 L) solution, JMC Zn. These values agree well with the limited data previously published, and with results reported for similar natural sample types. Samples were measured using a GVi IsoProbe MC-ICP-MS, based at the Natural History Museum, London. Long-term measurement reproducibility has been assessed by repeat analyses of both single element and complex matrix samples, and was commonly better than ± 0.07‰ for both δ66Zn and δ65Cu.  相似文献   

15.
High‐precision calcium isotopic compositions of a set of geological reference materials from the IAG (OU‐6), ANRT (UB‐N), MPI‐DING, USGS and GSJ, relative to NIST SRM 915a, are reported here. Measurements were performed by thermal ionisation mass spectrometry (Triton instrument) using a 42Ca–43Ca double spike. δ44/40Ca values of selected reference materials, mainly felsic rocks, are reported for the first time. Felsic rock values of δ44/40Ca ranged from 0.13‰ to 1.17‰, probably implying Ca isotopic fractionation could occur during magma evolution. δ44/40Ca values of ultramafic rocks, ranging from 0.74‰ to 1.51‰, were positively correlated with MgO and negatively with CaO contents, possibly owing to Ca isotopic fractionation during partial melting. δ44/40Ca of intermediate‐mafic rocks were around 0.78‰ and displayed limited variation, suggesting Ca isotopic fractionation is insignificant during magma evolution processes. As expected, δ44/40Ca of sedimentary and metamorphic rocks varied widely due to complex geological processes.  相似文献   

16.
This study presents a high‐precision Cd isotope measurement method for soil and rock reference materials using MC‐ICP‐MS with double spike correction. The effects of molecular interferences (e.g., 109Ag1H+, 94Zr16O+, 94Mo16O+ and 70Zn40Ar+) and isobaric interferences (e.g., Pd, In and Sn) to Cd isotope measurements were quantitatively evaluated. When the measured solution has Ag/Cd ≤ 5, Zn/Cd ≤ 0.02, Mo/Cd ≤ 0.4, Zr/Cd ≤ 0.001, Pd/Cd ≤ 5 × 10?5 and In/Cd ≤ 10?3, the measured Cd isotope data were not significantly affected. The intermediate measurement precision of pure Cd solutions (BAM I012 Cd, Münster Cd and AAS Cd) was better than ± 0.05‰ (2s) for δ114/110Cd. The δ114/110Cd values of soil reference materials (NIST SRM 2709, 2709a, 2710, 2710a, 2711, 2711a and GSS‐1) relative to NIST SRM 3108 were in the range of ?0.251 to 0.632‰, the δ114/110Cd values of rock reference materials (BCR‐2, BIR‐1, BHVO‐2, W‐2, AGV‐2, GSP‐2 and COQ‐1) varied from ?0.196‰ to 0.098‰, and that of the manganese nodule (NOD‐P‐1) was 0.163 ± 0.040‰ (2s, n = 8). The large variation in Cd isotopes in soils and igneous rocks indicates that they can be more widely used to study magmatic and supergene processes.  相似文献   

17.
海洋沉积物中碳氮稳定同位素因其能够确定有机质的来源,有助于了解碳循环、气候变化、有机质迁移转化而备受关注,但其分析测试过程中尚缺乏海洋沉积物碳氮稳定同位素标准物质进行质量监控。本文依据ISO导则35和国家《一级标准物质技术规范》(JJG1006—1994),研制了三个海洋沉积物碳氮稳定同位素标准物质(MSCNI-1、MSCNI-2和MSCNI-3),候选物样品分别采自我国渤海锦州湾湿地、东海闽浙近岸和东海冲绳海槽,定值组分为总碳氮同位素(δ~(13)C-TC、δ~(15)N-TN)和有机碳氮同位素(δ~(13)C-C~(org)、δ~(15)N-N~(org)),定值方法采用元素分析-同位素比值质谱法(EA-IRMS)多家实验室协同定值。经检验,三个标准物质候选物均匀性良好,一年内定值组分均无显著变化,具有良好的稳定性;δ~(13)C和δ~(15)N的标准不确定度分别小于0.15%和0.24%,标准值和标准不确定度合理。该套标准物质是我国以海底沉积物为介质的基体型碳氮稳定同位素标准物质,定值方法准确可靠,可供海洋、地质及环境等相关领域实验室用于仪器校准、方法评价和质量监控等。  相似文献   

18.
We report silicon isotopic determinations for USGS rock reference materials BHVO-1 and BHVO-2 using a Nu Plasma multi-collector (MC)-ICP-MS, upgraded with a new adjustable entrance slit, to obtain medium resolution, as well as a stronger primary pump and newly designed sampler and skimmer cones ("B" cones). These settings, combined with the use of collector slits, allowed a resolution to be reached that was sufficient to overcome the 14N16O and 14N2 interferences overlying the 30Si and the 28Si peaks, respectively, in an earlier set-up. This enabled accurate measurement of both δ30Si and δ29Si. The δ value is expressed in per mil variation relative to the NBS 28 quartz reference material. Based on data acquired from numerous sessions spread over a period of six months, we propose a recommended average δ30Si of −0.33 ± 0.05‰ and −0.29 ± 0.11‰ (2se) for BHVO-1 and BHVO-2, respectively. Our BHVO grand mean silicon isotope composition (δ30Si =−0.31 ± 0.06‰) is significantly more negative than the only published value for BHVO-2, but is in very good agreement with the recently established average value of ocean island basalts (OIB), confirming the conclusion that the OIB reservoir has a distinct isotopic composition from the solar reservoir as sampled by chondrites.  相似文献   

19.
Notations for Cd stable isotope compositions and the use of reference materials are discussed. It is proposed that Cd stable isotope data should be reported as variations of the 114Cd/110Cd ratio/ using either the δ114/110Cd or ε114/110Cd notations. Future publications should report results for BAM-1012 Cd, the only currently available international Cd isotope reference material. It is also recommended that "Münster Cd" and a range of specified geological reference materials are used as additional reference materials. The final choice of a primary "zero-delta" reference standard remains the most important outstanding question.  相似文献   

20.
The lithium isotope system can be an important tracer for various geological processes, especially tracing continental weathering. The key to this application is the accurate and precise determination of lithium isotopic composition. However, some of the previously established column separation methods are not well behaved when applied to chemically diverse materials, due to the significant variations in matrix/lithium ratios in some materials. Here, we report a new dual‐column system for lithium purification to achieve accurate and precise analysis of lithium isotopic compositions using a multi‐collector inductively coupled plasma‐mass spectrometer (MC‐ICP‐MS). Compared with single‐column systems, our dual‐column system yielded a consistent elution range of the lithium‐bearing fraction (7–16 ml) for samples with a large range of lithium loads and matrix compositions, so that column re‐calibration is not required. In addition, this method achieved complete lithium recovery and low matrix interference (e.g., Na/Li ≤ 1) with a short elution time (~ 6 h, excluding evaporation), with the entire procedure completed in 1.5 days. We report high precision Li isotopic compositions in twelve chemically diverse materials including seawater, silicates, carbonates, manganese nodules and clays. New recommended Li isotopic values and associated uncertainties are presented as reference values for quality control and inter‐laboratory calibration for future research and were consistent with previously published data. However, significant lithium isotopic variances (~ 1‰) in BHVO‐2 from different batches suggest Li isotopic heterogeneity in this reference material and that Li isotopic studies using this reference material should be treated with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号