首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 641 毫秒
1.
We present a numerical analysis of free-space propagation of the beams inside a long-baseline optical/infrared interferometer. Unlike the models of beam propagation used in most previous studies, our analysis incorporates the effects of atmospheric seeing on the wavefronts entering the interferometer. We derive results for the changes in throughput, coherence loss and fringe-detection signal-to-noise ratio arising from diffraction along the propagation path. Our results for conditions of moderate seeing show that although the flux throughput decreases with propagation distance for a given beam diameter, the fringe contrast increases at the same time. In this case it becomes possible for diffraction to increase the signal-to-noise ratio of the fringe measurements. Previous studies have only considered an arrangement where all the apertures in the beam-propagation system have the same diameter. If the light at the end of the propagation path is collected with a fixed size aperture, we find that in many cases the signal-to-noise ratio for fringe detection is maximized when the initial beam diameter is approximately 30 per cent smaller than the final collector diameter. We discuss the implications of our results in the context of future interferometer designs.  相似文献   

2.
Target ranging by HF radar can be done by correcting the group path of target echoes for the delay due to the propagation through the ionosphere. One possibility is to simulate the propagation by ray-tracing but in this case the final accuracy obtained in target registration depends mainly on the quality of the ionospheric model used to raytrace. In this study, the PRIME ionospheric model has been used to perform ray-tracing on a 950 km path, between Toulon and Lannion, for which oblique soundings data from the SCIPION sounder are available for December 1991. The ray-tracings were performed by using the vertical electron density profiles at five points along the path calculated by PRIME for monthly median and/or instantaneous conditions. Vertical electron density profiles from the IRI model have also been considered for comparison. The results of this investigation are presented and the accuracy in target ranging is discussed as obtained for the conditions of the simulations.  相似文献   

3.
The propagation characteristics of MHD fast-mode disturbances, which can emanate from flare regions, are computed for realistic conditions of the solar corona at the times of particular flares. The path of a fast-mode disturbance is determined by the large-scale (global) coronal distributions of magnetic field and density, and can be computed by a general raytracing procedure (eikonal equation) adapted to MHD. We use the coronal (electron) density distribution calculated from daily K-coronameter data, and the coronal magnetic field calculated under the current-free approximation from magnetograph measurements of the photospheric magnetic field. We compare the path and time-development of an MHD fast-mode wavefront emitted from the flare region (as calculated from a realistic model corona for the day of the observed Moreton wave event) with actual observations of the Moreton wave event, and find that the Moreton wave can be identified with the rapidly moving intersection of the coronal fast-mode wavefront and the chromosphere (as hypothesized in our previous paper); the directivity (anisotropic propagation), as well as other characteristics of the propagation of the Moreton wave can be successfully explained.sponsored by the National Science Foundation.  相似文献   

4.
周期修正项是长波授时信号的一个特征量,它通常与长波授时信号的跟踪点有关。在授时过程中,它是影响长波传播路径时延计算的重要因素。讨论了长波定时信号接收端感应电动势周期修正项与发射端电流信号周期修正项的不同,分析了磁天线和电天线对周期修正项的影响,计算了实际传播介质中周期修正项的大小。结果表明:当传播路径上的电参数恒定时,周期修正项与传播距离有关,传播距离越大,感应电动势的周期修正项也越大,并且两者呈线性关系。同时,周期修正项也受等效电导率等因素的影响,在恒定的距离上,等效电导率越小,周期修正项反而越大。授时用户可以利用感应电动势周期修正项的数值计算结果修正传播路径上的时延,有效地提高传播路径时延计算的精度,从而提高授时精度。  相似文献   

5.
We have considered the problem of the propagation of nonzero rest-mass neutrinos in the Friedmann dust universes of three types: open, flat, and closed, as well as in the radiation-dominated epoch of thehot universe. The total Lagrangian path of the particle has been calculated, and this is shown to be finite for all the three universes-contrary to the total path of the photon, which is infinite in the open and flat universes.We have found the particle horizon as a function of the relativistic parameter at the emission moment and at the moment of observation. The extreme relativistic and nonrelativistic particle motion and its difference from the photon motion have been investigated.  相似文献   

6.
We used the solution of the propagation equation of galactic cosmic rays given in /1/ to analyse the HEAO-3 C-2 data and determined their escape path length distribution and residence time. We also determined the age of the cosmic rays from the decay of Mn-54  相似文献   

7.
Ledenev  V.G. 《Solar physics》2000,197(2):387-397
It is shown that the positive frequency drift sometimes observed in the high-frequency part of type III bursts can be explained by a decrease in the signal group delay as the emission source moves in the direction of decreasing density. This effect is detemined fundamentally by the density distribution along the propagation path of electromagnetic waves. It is considered to reflect the influence of magnetic field on the group delay.  相似文献   

8.
Particle fluxes and pitch angle distributions of relativistic solar protons at Earth's orbit have been determined by Monte Carlo calculations. The analysis covers two hours after the release of the particles from the Sun and total of 8 × 106 particle trajectories were simulated. The pitch angle scattering was assumed to be isotropic and the scattering mean free path was varied from 0.1 to 4 AU.The intensity-time profiles after a delta-like injection from the Sun show that the interplanetary propagation is clearly non-diffusive at scattering mean-free paths above 0.5 AU. All pitch angle distributions have a steady minimum at 90 °, and they become similar about 20 min after the arrival of first particles.As an application, the solar injection profile and the interplanetary scattering mean-free path of particles that gave rise to the GLE on 7 May, 1978 were determined. In contrast to the values of 3–5 AU published by other authors, the average scattering mean-free path was found to be about 1 AU.  相似文献   

9.
Using a well-known method for calculating the propagation of waves in an inhomogeneous medium, we have managed to reduce the problem of wave propagation in pulsar magnetospheres to a system of two ordinary differential equations that allow the polarization characteristics of the radio emission to be quantitatively described for any magnetic field structure and an arbitrary density profile of the outflowing plasma. We confirm that for ordinary pulsars (period P ∼ 1 s, magnetic field B 0 ∼ 1012 G, particle production multiplicity parameter λ ∼ 104), the polarization is formed inside the light cylinder at a distance of the order of a thousand neutron star radii. For reasonable magnetic field strengths and plasma densities on the emission propagation path, the degree of circular polarization is found to be ∼5–20%, in good agreement with observations.  相似文献   

10.
The intensity and energy spectra of multiply charged cosmic ray nuclei, in the energy interval 250–1500 MeV/n, were studied at three different levels of solar activity, viz. in 1963, 1964 and 1967. The same detectors, nuclear emulsion stacks flown from Fort Churchill, Canada, were used to determine simultaneouslty the energy spectra of helium, C, N, O as well as H (Z=10–28) nuclei. An analysis of the measured spectra indicates that these can be interpreted in terms of: (a) the source spectrum as a Fermi spectrum with a spectral index of 2.65; (b) the interstellar propagation as in a Gaussian distribution of path lengths with a mean path length of 4 g cm–2 and (c) the interplanetary propagation as given by the numerical solution of the Fokker-Planck equation incorporating diffusion, convection and adiabatic deceleration. On comparing the measured ratios of He to H-nuclei (mean Z14) with the theoretically calculated values for the three levels of solar activity, it is found that within experimental uncertainties, the solar modulation is essentially the same for nuclei of same mass to charge ratio and is not dependent on the charge of the nuclei.On leave from Tata Institute of Fundamental Research, Bombay.  相似文献   

11.
A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfvén waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.  相似文献   

12.
A transistorized wide-band (0.5–11 kHz) VLF goniometer has been developed for the study of whistlers and ELF/VLF emissions. It consists of two crossed vertical loops from which a single loop aerial, rotating about a vertical axis at a frequency of 25 sec?1, is synthesized electronically. During periods of high whistler activity, when the same propagation paths may be identified in successive whistler groups, it is possible to determine the bearing of the exit point of such a magnetospheric path with an error, typically, of ± 10–20°.  相似文献   

13.
Simulation technique for whistler mode signal propagating through inhomogeneous plasma using WKB approximation has been developed (Singh, K., Singh, R.P., Ferencz, O.E., 2004. Simulation of whistler mode propagation for low latitude stations. Earth Planet Space 56, 979-987). In the present paper, we have used it for the analysis of recorded signals at low latitudes and estimated the nose frequency, which is not observed on the dynamic spectra. At low latitudes nose frequency is ∼100 kHz or more and therefore it is absent in the dynamic spectra due to attenuation of the signal at higher frequencies. The importance of nose frequency is in determining the exact path of propagation, which is required in probing of ambient medium. It is shown that the method permits to study the nose frequency variation, it can be used to deduce physical parameters as the global electric field. A case study permits to get a reasonable value of the electric field, which up to now could not be done at very low latitude.  相似文献   

14.
We present a new method to separate interplanetary and coronal propagation, starting from intensity variations observed by spaceprobes at different heliolongitudes. In general, a decrease in absolute intensities is observed simultaneously with an increase in temporal delays. The coupling of these two effects can be described by Reid's model of coronal diffusion and can in principle be used to determine the two coronal time constants, diffusion time t c and escape time A. In addition, a least-squares fit method is used to determine the parameters of interplanetary transport, assuming a radial dependence as (r) = 0(r/1 AU)b. The method is applied to the two solar events of 27 December, 1977 and 1 January, 1978 which were observed by the spaceprobes Helios 1, Helios 2, and Prognoz 6. Energetic particle data are analysed for 13–27 MeV protons and -0.5 MeV electrons. For the regions in space encountered during these events the mean free path of electrons is smaller than that of protons. Straight interpolation between the two rigidities leads to a rather flat rigidity dependence (P) P n with n = 0.17–0.25. This contradicts the prediction of a constant mean free path or of the transition to scatter-free propagation below about 100 MV rigidity. In three of the four cases the mean free path of 13–27 MeV protons is of the order 0.17 AU, the mean free path of electrons of the order 0.06 AU. For protons we find b - 0.7 for the exponent of the radial variation.The concept of two different coronal propagation regimes is confirmed. It is remarkable that in both regimes electrons are transported more efficiently than protons. This holds for the temporal delay as well as for the amplitude decrease. This is in contrast with the long existing concept of rigidity independent transport and puts severe limits to any model of coronal transport. For the December event all three spaceprobes are in the fast propagation regime up to an angular distance of 62°. For protons we find a finite delay even in the fast propagation region, corresponding to a coronal delay rate of about 0.8 hr rad-1 up to 60° angular distance. In contrast, relativistic electrons may reach this distance within a few minutes.The fast transport of electrons and the different behaviour of electrons and protons is in contradiction to the expanding bottle concept. An explanation of coronal transport by shock acceleration directly on open field lines could in principle work in case of protons in the fast propagation region, but would fail in case of the electrons. The fast and efficient transport of electrons is most likely due to a region of field lines extending over a wide range of longitudes directly from the active region into interplanetary space. The much slower transport of both particle types at large azimuthal distances can neither be explained by direct access to open field lines not by the direct shock acceleration concept. A possible explanation is the loop reconnection model in a modified version, allowing for a faster lateral transport of electrons.Now at AEG, 2000 Wedel, F.R.G.  相似文献   

15.
The downward propagation of ELF waves (100–700 Hz) in the ionosphere is studied by means of a generalised multiple-reflection full-wave method. It is shown that for the production of an ion cutoff whistler the incident wave-normal must point inwards (equatorwards) with respect to the vertical, the ion cutoff whistler conversion coefficient RRL being a maximum when the reflected wave normal lies close to the geomagnetic field direction at the crossover level.For a low frequency cutoff of ELF noise to exist, the incident wave-normals at the crossover level must lie outside a ‘cone of penetration’ of ~40° semi-vertical angle, whose axis coincides with the geomagnetic field line. For propagation in the magnetic meridian plane, total reflection of downgoing whistlers is obtained either for large outward (poleward) incident angles, with reflection heights generally above the crossover level and possibly even above the gyrofrequency level, or else for inward (equatorward) wave-normal directions, in which case the reflection process usually occurs below the crossover level, and involves an R to L mode conversion on the downgoing path.Analysis of a scatter plot of the lower cutoff frequencies of ELF noise as a function of altitude and latitude shows that widely varying abundances must be postulated at all latitudes in order to explain the observations.  相似文献   

16.
In this paper the question is examined of how the v.l.f. radio-waves are guided along the magnetic field. Energy passes through the magnetic field under two sets of conditions. Corresponding to the “nose-whistlers” explained by Helliwell, the first one occurs when the wave-normal itself is in the direction of the magnetic field. This does not happen in the second case when the remarkable property is also shown that all frequencies are propagated at the same velocity V0 = cƒH/2ƒ0H gyrofrequency, ƒ0 frequency of the plasma). Considerations of energy point out that, if such a propagation is not easily observable in the case of an isotropic emission, it is not the same thing for an emission produced by erenkov effect, which is able to produce all energy by this mode of propagation, provided the particle's velocity has a low fixed value (˜ 10,000 km/sec in the exosphere). All frequencies being emitted at the same time and following the same path wtih the same velocity, we can explain the broadband noise observed during the reception of whistlers. The required velocity of particles is exactly the velocity V0. This coincidence is explained in an appendix, and extended to other anisotropic media.  相似文献   

17.
Particle precipitation in Brazilian geomagnetic anomaly during magnetic storms is investigated using riometer and VLF propagation data. It is found that during large storms the changes in the ionosphere caused by particle precipitation are detectable. There is a good correlation between the behavior of the absorption and the variations of the magnetic field intensity during different phases of a storm. In particular, there seems to be a close relationship between the precipitation of high energy particles and short-period fluctuations of the magnetic field intensity of the order of 5–6 min. During the main phase of the storm, when the field intensity reaches its minimum, the flux of soft electrons also plays a significant role in producing absorption. The nature of precipitation associated with a sudden commencement appears to be more complex; the predominance of low or high energy particle flux may depend on the magnitude of the field increase. The amplitude and phase records of VLF signals also show the effect of the disturbance, but it is difficult to correlate the changes in these records with the features observed on the magnetogram, because only a small part of the propagation path lies in the region of the anomaly. A more detailed analysis of riometer data from different stations and VLF phase and amplitude records for different paths will be helpful in understanding the mechanism of particle precipitation associated with magnetic disturbances. In future experiments it may also be fruitful to look for detectable radiation emitted by the precipitating electrons, for example, Cherenkov and synchrotron radiation.  相似文献   

18.
19.
Inhomogeneities in wave propagation conditions near and below the solar surface have been detected by means of time-distance helioseismology. Here we calculate the effect of temperature inhomogeneities on the travel times of sound waves. A temperature increase, e.g., in active regions, not only increases the sound speed but also lengthens the path along which the wave travels because the expansion of the heated layers shifts the upper turning of the waves upward. Using a ray-tracing approximation we find that in many cases the net effect of a temperature enhancement is an increase of the travel times. We argue that the reduced travel times that are observed are caused by a combination of magnetic fields in the active region and reduced subsurface temperatures. Such a reduction may be related to the increased radiative energy loss from small magnetic flux tubes.  相似文献   

20.
Coronal radio-sounding experiments were carried out using the S-band (2.3 GHz) and X-band (8.4 GHz) signals of the ESA Mars Express, Venus Express, and Rosetta spacecraft during five superior conjunctions occurring in 2004, 2006 (3×), and 2008/2009. Differential frequency and propagation delay (ranging) observations were recorded during these opportunities over the better part of a solar cycle, yielding information on the large-scale structure of the coronal electron-density distribution and its variations, including fluctuations on time scales from seconds to hours. These results concern primarily regions of slow solar wind because the radio propagation path is generally confined to the low heliolatitude regions by the conjunction. The mean frequency fluctuation and total electron content are determined as a function of heliocentric distance, and, with a few exceptions caused by streamers and CMEs, are found to be consistent with previous results from experiments on Ulysses. Dense coronal streamers and several coronal mass ejection (CME) events were identified in the radio-frequency data, some of which were observed in white light by the LASCO coronagraphs onboard SOHO. For those events with sufficient mutual coverage, good correlations are found between the electron-content fluctuations and structure imaged by the LASCO instrument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号