首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Schrijver  Carolus J.  Title  Alan M. 《Solar physics》1999,188(2):331-344
Eleven microwave spike events observed with the 2.6–3.8 GHz spectrometer of Beijing Astronomical Observatory (BAO) are analysed. The polarization degrees of spikes are variable, some spikes have frequency drift with the drift rate of several GHz s–1. In particular, the time delay (8 ms) between the two polarization modes of spike is detected, which is different from previous results. According to the leading spot rule, we conclude that the o-modes arrive first. Moreover, the reversal of polarization sense versus frequency is also found. A change of the emission mode may be the cause of the polarization reversal.  相似文献   

2.
利用北京天文台 2.6—3.8 GHz频谱仪的观测资料,找到 11个微波尖峰辐射事件.尖峰一般具有数十毫秒的寿命,数百个sfu的流量密度和数十至数百MHz的带宽,这与以前的报道类似.尖峰的偏振度各式各样,有的尖峰还有数千MHz/s的频率漂移.某些尖峰在二个偏振态之间有8毫秒的时间延迟(最大延迟可达16毫秒).另外,还发现了尖峰的偏振度随频率剧烈变化的偏振反转现象.  相似文献   

3.
A new model for solar spike bursts is considered based on the interaction of Langmuir waves with ion-sound waves: l+st. Such a mechanism can operate in shock fronts, propagating from a magnetic reconnection region. New observations of microwave millisecond spikes are discussed. They have been observed in two events: 4 November 1997 between 05:52–06:10 UT and 28 November 1997 between 05:00–05:10 UT using the multichannel spectrograph in the range 2.6–3.8 GHz of Beijing AO. Yohkoh/SXT images in the AR and SOHO EIT images testify to a reconstruction of bright loops after the escape of a CME. A fast shock front might be manifested as a very bright line in T e SXT maps (up to 20 MK) above dense structures in emission measure (EM) maps. Moreover one can see at the moment of spike emission (for the 28 November 1997 event) an additional maximum at the loop top on the HXR map in the AR as principal evidence of fast shock propagation. The model gives the ordinary mode of spike emission. Sometimes we observed a different polarization of microwave spikes that might be connected with the depolarization of the emission in the transverse magnetic field and rather in the vanishing magnetic field in the middle of the QT region. Duration and frequency band of isolated spikes are connected with parameters of fast particle beams and shock front. Millisecond microwave spikes are probably a unique manifestation of flare fast shocks in the radio emission.  相似文献   

4.
Wang  S.J.  Yan  Y.H.  Fu  Q.J. 《Solar physics》2002,209(1):185-193
Many solar microwave bursts presenting fine structures were recorded at high temporal resolution (8 ms) by the 2.6–3.8 GHz spectrometer of National Astronomical Observatories of China (NAOC). Here we present data that were recorded on 15 April 1998. After data processing, more than one hundred spikes were detected in the interval 07:59:29.622–07:59:50.362 UT. Some of the spikes were single, while others were grouped in clusters. We report the observational characteristics including lifetime, frequency bandwidth, drift rate and polarization degree, as well as duration of spike clusters. Afterwards we discuss the difference between the lifetime of the spikes presented here (near 3 GHz) and those reported formerly at frequency up to 1 GHz, the probable source density and dimension, the brightness temperature and some other characteristics.  相似文献   

5.
A New Catalogue of Fine Structures Superimposed on Solar Microwave Bursts   总被引:1,自引:0,他引:1  
The 2.6-3.8 GHz, 4.5-7.5 GHz, 5.2-7.6 GHz and 0.7-1.5 GHz component spectrometers of Solar Broadband Radio Spectrometer (SBRS) started routine observations, respectively, in late August 1996, August 1999, August 1999, and June 2000. They just managed to catch the coming 23rd solar active maximum. Consequently, a large amount of microwave burst data with high temporal and high spectral resolution and high sensitivity were obtained. A variety of fine structures (FS) superimposed on microwave bursts have been found. Some of them are known, such as microwave type Ⅲ bursts, microwave spike emission, but these were observed with more detail; some are new. Reported for the first time here are microwave type U bursts with similar spectral morphology to those in decimetric and metric wavelengths, and with outstanding characteristics such as very short durations (tens to hundreds ms), narrow bandwidths, higher frequency drift rates and higher degrees of polarization. Type N and type M bursts were also observed. Detailed zebra pattern and fiber bursts at the high frequency were found. Drifting pulsation structure (DPS) phenomena closely associated with CME are considered to manifest the initial phase of the CME, and quasi-periodic pulsation with periods of tens ms have been recorded. Microwave “patches”, unlike those reported previously, were observed with very short durations (about 300ms), very high flux densities (up to 1000 sfu), very high polarization (about 100% RCP), extremely narrow bandwidths (about 5%), and very high spectral indexes. These cannot be interpreted with the gyrosynchrotron process. A superfine structure in the form of microwave FS (ZPS,type U), consisting of microwave millisecond spike emission (MMS), was also found.  相似文献   

6.
The main aim of this paper is to estimate, from multispectral observations, the plasma parameters in a microwave burst source which was also the site of spike emission. This information is essential for the determination of the spike emission process. By analyzing one-dimensional source distributions observed with the SSRT at 5.7 GHz and correlating them with Yohkoh X-ray and Nobeyama 17 GHz images, we have concluded that the microwave emitting region was larger than the soft X-ray loop-top source, and that the origin of the burst could be explained by gyrosynchrotron emission of non-thermal electrons in a magnetic field of approximately 100 G. It has been shown that the source of 5.7 GHz spikes observed during the burst was located close to an SXR-emitting loop with high density and temperature and a relatively low magnetic field. Thus, plasma emission is the most favourable radiation mechanism for the generation of the sub-arc-second microwave pulses.  相似文献   

7.
A. A. Kuznetsov 《Solar physics》2008,253(1-2):103-116
Zebra pattern is observed as a number of almost parallel bright and dark stripes in the dynamic spectrum of solar radio emission. Recent observations show that zebra patterns in the microwave range often have superfine temporal structure, when the zebra stripes consist of individual short pulses similar to millisecond spikes. In this article, the burst on 21 April 2002 is investigated. The burst with a distinct superfine structure was detected at the Huairou Station (China) in 2.6?–?3.8 GHz frequency range. It is found that the emission pulses are quasi-periodic, the pulse period is about 25?–?40 ms and decreases with an increase of the emission frequency. The degree of circular polarization of zebra pattern increases with an increase of the emission frequency, it varies from moderate (about 20%) to relatively high (>60%) values. The temporal delay between the signals with left- and right-handed polarization is not found. The conclusion is made that the emission is generated by plasma mechanism at the fundamental plasma frequency in a relatively weak magnetic field. The observed polarization of the emission is formed during its propagation due to depolarization effects. A model is proposed in which the superfine temporal structure is formed due to modulation of the emission mechanism by downward propagating MHD oscillations; this model allows us to explain the observed variation of the pulse period with the emission frequency.  相似文献   

8.
《New Astronomy》2003,8(3):213-229
A flare-CME event on April 15, 1998 is studied with data of Nobeyama Radio Polarimeters (NoRP) and Heliograph (NoRH), the radio spectrometers of Chinese National Astronomical Observatories (1.0–2.0 GHz and 2.6–2.8 GHz), and the Astrophysical Institute of Postdam (200–800 MHz), as well as the data of YOHKOH, SOHO, BATSE, and GOES. There were strong fluctuations superposed on the initial phase of the BATSE hard X-ray burst, and the radio burst at 1.0–2.0 GHz with a group of type III-like positive and negative frequency drift pairs, which may be interpreted as the process of magnetic reconnection or particle acceleration in corona. A type II-like burst with a series of pulsations at 200–800 MHz followed the maximum phase of the radio and hard X-ray burst, and slowly drifted to lower frequencies with typical zebra feature. After 10 min of that, a similar dynamic spectrum was recorded at 2.6–3.8 GHz, where the type II-like signal drifted to higher frequencies with a series of pulsations and zebra structures. The polarization sense was strongly RCP at 2.6–3.8 GHz, and weakly LCP at 1.0–2.0 GHz, which was confirmed by the observations of NoRP. The radiation mechanism of these pulsations may be caused by the electron cyclotron maser instability. The local magnetic field strength and source height are estimated based on the gyro-synchrotron second harmonic emission. The ambient plasma density is calculated from the YOHKOH/SXT data. The ratio between the electron plasma frequency and gyro-frequency is around 1.3, which corresponds to the reversal value from extraordinary mode (LCP) to ordinary mode (RCP). Moreover, both the time scale and the modularity of an individual pulse increase statistically with the increase in the burst flux, which may be explained by the acceleration process of non-thermal electrons in the shock wave-fronts propagated upward and downward. Therefore, the radio observations may provide an important signature that flare and CME are triggered simultaneously by magnetic reconnection and are associated with the formation of bi-directional shock waves.  相似文献   

9.
A new multichannel spectrometer, Phoenix-3, is in operation having capabilities to observe solar flare radio emissions in the 0.1?–?5 GHz range at an unprecedented spectral resolution of 61.0 kHz with high sensitivity. The present setup for routine observations allows measuring circular polarization, but requires a data compression to 4096 frequency channels in the 1?–?5 GHz range and to a temporal resolution of 200 ms. First results are presented by means of a well observed event that included narrowband spikes at 350?–?850 MHz. Spike bandwidths are found to have a power?–?law distribution, dropping off below a value of 2 MHz for full width at half maximum (FWHM). The narrowest spikes have a FWHM bandwidth less than 0.3 MHz or 0.04% of the central frequency. The smallest half-power increase occurs within 0.104 MHz at 443.5 MHz, which is close to the predicted natural width of maser emission. The spectrum of spikes is found to be asymmetric, having an enhanced low-frequency tail. The distribution of the total spike flux is approximately an exponential.  相似文献   

10.
On 13 December 2006, some unusual radio bursts in the range 2.6?–?3.8 GHz were observed during an X3.4 flare/CME event from 02:30 to 04:30 UT in active region NOAA 10930 (S06W27) with the digital spectrometers of the National Astronomical Observatories of China (NAOC). During this event many spikes were detected with the high temporal resolution of 8 ms and high frequency resolution of 10 MHz. Many of them were found to have complex structures associated with other radio burst types. The new observational features may reflect certain emission signatures of the electron acceleration site. In this paper, we present the results of the analysis of the new observational features of the complex spikes. According to the observed properties of the spikes, we identify five classes. Their observational parameters, such as duration, bandwidth, and relative bandwidth, were determined. Most spikes had negative polarization, but spikes with positive polarization were observed during a short time interval and were identified as a separate class. Based on the analysis of observations with Hinode/SOT (Solar Optical Telescope) we suggest that the sources of the spikes with opposite polarizations were different. Combined observations of spikes and fiber bursts are used to estimate the magnetic field strength in the source.  相似文献   

11.
Wang  M.  Xie  R.X.  Duan  C.C.  Yan  Y.H.  Sych  R.A.  Altyntsev  A.T. 《Solar physics》2003,212(2):407-424
A type IV radio burst accompanied by several normal- and reverse-drifting type III bursts, multiple long-term quasi-periodic pulsations and spikes was observed with the radio spectrometers (1.0–2.0 and 2.6–3.8 GHz) at National Astronomical Observatories of China (NAOC) on 23 September 1998. In combination with the images of Siberian Solar Radio Telescope (SSRT) of Russia, the complex and multiple magnetic structures inferred from the radio bursts reveal the existence of both large-scale and small-scale magnetic structures. This event suggests that the geometries of coronal magnetic fields contain multiple discrete electron acceleration/injection sites at different heights, and extended open and closed magnetic field lines. It can be shown that the energetic electrons gain access to open, diverging and closed field lines thus producing different types of radio bursts. From the characteristics of position, polarization, dispersion and displacement of the sources, the model of the type IV event is supported, which involves synchrotron emission from the electrons confined by the rapid scattering through the interaction of hydromagnetic wave with particles.  相似文献   

12.
We briefly describe the polarization state of the spike groups and fast fine structures superimposed on the 47GB microwave burst of 1991 May 16. At two frequencies 100 MHz apart, namely, 2645 and 2545 MHz, the polarization showed rapid reversals on short time scales of the order of 50 100ms. We think this is probably related to fluctuations on both short time and small spatial scales, in the plasma density and magnetic field of the emission region. Thése oscillations cause the plasma and cyclotron frequency ratio to vary around the value of , thus making the electron cyclotron maser instability growth rate to be dominated alternately by the X mode and the O mode and the polarization state to switch from one sign to the other.  相似文献   

13.
The microwave spectrum of solar millisecond spikes   总被引:5,自引:0,他引:5  
M. Stähli  A. Magun 《Solar physics》1986,104(1):117-123
The microwave radiation from solar flares sometimes shows short and intensive spikes which are superimposed on the burst continuum. In order to determine the upper frequency limit of their occurrence and the circular polarization, a statistical analysis has been performed on our digital microwave observations from 3.2 to 92.5 GHz. Additionally, fine structures have been investigated with a fast (5 ms) 32-channel spectrometer at 3.47 GHz. We found that 10% of the bursts show fine structures at 3.2 and 5.2 GHz, whereas none occurred above 8.4 GHz. Most of the observed spikes were very short ( 10 ms) and their bandwidth varied from below 0.5 MHz to more than 200 MHz. Simultaneous observations at two further frequencies showed no coincident spikes at the second and third harmonic. The observations can be explained by the theory of electron cyclotron masering if the observed bandwidths are determined by magnetic field inhomogeneities or if the rise times are independent of the source diameters. The latter would imply source sizes between 50 and 100 km.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

14.
On April 21, 2002, a broadband solar radio burst was observed at about 01:00 – 03:00 UT with the digital spectrometers of National Astronomical Observatories of China (NAOC). Also many fiber bursts superposed on the continuum bursts were detected in the frequency range of 2.6 – 3.8 GHz during the time interval. After data processing, some parameters of the fibers such as frequency drift rate, duration, bandwidth, and relative bandwidth were determined. The mean value of the frequency drift was in the range of 42.3 – 87.4 MHz s−1 (negative). A theoretical interpretation for the fibers was presented based upon a model of the velocity of Alfvén solitons. In this model, the source of the fiber emission was considered as the ducting of the solitons within the magnetic-mirror loop. Then the magnetic field strength of the fiber source was estimated to be about 130 ≤ B0 ≤ 270 G. Also a comparison of the magnetic field estimation was made with another model of whistler group velocity.  相似文献   

15.
A fine structure consisting of three almost equidistant frequency bands was observed in the high frequency part of a solar burst on 1998 April 15 by the spectrometer of Beijing Astronomical Observatory in the range 2.6-3.8GHz. A model for this event based on beam-anisotropic instability in the solar corona is presented. Longitudinal plasma waves are excited at cyclotron resonance and then transformed into radio emission at their second harmonic.The model is in accordance with the observations if we suppose a magnetic field strength in the region of emission generation of about 200G.  相似文献   

16.
A solar flare occurring on 26 February, 1981 at 19:32 UT was observed simultaneously in hard X-rays and microwaves with a time resolution of a fraction of a second. The X-ray observations were made with the Hard X-ray Monitor on Hinotori, and the microwave observations were made at 22 GHz with the 13.7 m Itapetinga mm-wave antenna. Timing accuracy was restricted to 62.5 ms, the best time resolution obtained in hard X-rays for this burst. We find that: (a) all 22 GHz flux structures were delayed by 0.2–0.9 s relative to similar structures in hard X-rays throughout the burst duration; (b) different burst structures showed different delays, suggesting that they are independent of each other; (c) the time structures of the degree of polarization at 22 GHz precede the total microwave flux time structures by 0.1–0.5 s; (d) The time evolutions of time delays of microwaves with respect to hard X-rays and also the degree of microwave polarization show fluctuations with are not clearly related to any other time structures. If we take mean values for the 32 s burst duration, we find that hard X-ray emission precedes the degree of microwave polarization by 450 ms, which in turn precedes the total microwave flux by 110 ms.  相似文献   

17.
A well-developed multiple impulsive microwave burst occurred on February 17, 1979 simultaneously with a hard X-ray burst and a large group of type III bursts at metric wavelengths. The whole event is composed of several subgroups of elementary spike bursts. Detailed comparisons between these three classes of emissions with high time resolution of 0.5 s reveal that individual type III bursts coincide in time with corresponding elementary X-ray and microwave spike bursts. It suggests that a non-thermal electron pulse generating a type III spike burst is produced simultaneously with those responsible for the corresponding hard X-ray and microwave spike bursts. The rise and decay characteristic time scales of the elementary spike burst are 1 s, 1 s and 3 s for type III, hard X-ray and microwave emissions respectively. Radio interferometric observations made at 17 GHz reveal that the spatial structure varies from one subgroup to others while it remains unchanged in a subgroup. Spectral evolution of the microwave burst seems to be closely related to the spatial evolution. The spatial evolution together with the spectral evolution suggests that the electron-accelerating region shifts to a different location after it stays at one location for several tens of seconds, duration of a subgroup of elementary spike bursts. We discuss several requirements for a model of the impulsive burst which come out from these observational results, and propose a migrating double-source model.  相似文献   

18.
The circular polarization of complex solar bursts was measured at short microwaves (22 GHz, × 1.35 cm) with high sensitivity (0.03 s.f.u. r.m.s.) and high time resolution (5 ms). The polarization shows up as soon as an excess burst emission is measured. Two components are found in the time development of the degree of circular polarization: (1) a steady level, sometime changing smoothly with time; (2) superimposed faster polarization time structures, small compared to the basic steady degree of polarization, and often not clearly related to the burst flux time structures. The observed degrees may range from 10% to more than 85%.In memoriam (1942–1981).  相似文献   

19.
We present the results of the analysis of thirteen events consisting of dm-spikes observed in Toruń between 15 March 2000 and 30 October 2001. The events were obtained with a very high time resolution (80 microseconds) radio spectrograph in the 1352 – 1490 MHz range. These data were complemented with observations from the radio spectrograph at Ondřejov in the 0.8 – 2.0 GHz band. We evaluated the basic characteristics of the individual spikes (duration, spectral width, and frequency drifts), as well as their groups and chains, the location of their emission sources, and the temporal correlations of the emissions with various phases of the associated solar flares. We found that the mean duration and spectral width of the radio spikes are equal to 0.036 s and 9.96 MHz, respectively. Distributions of the duration and spectral widths of the spikes have positive skewness for all investigated events. Each spike shows positive or negative frequency drift. The mean negative and positive drifts of the investigated spikes are equal to −776 MHz s−1 and 1608 MHz s−1, respectively. The emission sources of the dm-spikes are located mainly at disk center. We have noticed two kinds of chains, with and without frequency drifts. The mean durations of the chains vary between 0.067 s and 0.509 s, while their spectral widths vary between 7.2 MHz and 17.25 MHz. The mean duration of an individual spike observed in a chain was equal to 0.03 s. While we found some agreement between the global characteristics of the groups of spikes recorded with the two instruments located in Toruń and Ondřejov, we did not find any one-to-one relation between individual spikes.  相似文献   

20.
Out of 120 solar type IV events recorded at the Trieste Astronomical Observatory, we have selected 15 groups of spike bursts. We analyze their properties, concentrating on the characteristics of their polarization. We find that the polarization of the spikes varies over a wide range, but that within a particular group of spikes it remains almost constant. Sometimes groups of spikes with different degrees of polarization occur almost contemporaneously, probably indicating that more than one source is active at nearly the same time.Occasionally spike bursts accompany type III bursts. Then, unlike the case with type IV-associated events, the polarization of the spikes varies greatly.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号