首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eclogite facies assemblage K-feldspar–jadeite–quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite+quartz=albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm63Prp26Grs10)–K-feldspar–plagioclase–biotite±sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm50Prp14Grs35)–jadeite (Jd80–97Di0–4Hd0–8Acm0–7)–zoisite–phengite. Plagioclase is replaced by jadeite–zoisite–kyanite–K-feldspar–quartz, and biotite is replaced by garnet–phengite or omphacite–kyanite–phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar–jadeite–quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar–jadeite–quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15–21 kbar (±1.6–1.9 kbar) at 550±50 °C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio PH2O/PT. The inferred limiting a(H2O) for the assemblage jadeite–kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.  相似文献   

2.
Dehydration melting of muscovite in metasedimentary sequences is the initially dominant mechanism of granitic melt generation in orogenic hinterlands. In dry (vapour-absent) crust, muscovite reacts with quartz to produce K-feldspar, sillimanite, and monzogranitic melt. When water vapour is present in excess, sillimanite and melt are the primary products of muscovite breakdown, and any K-feldspar produced is due to melt crystallization. Here we document the reaction mechanisms that control nucleation and growth of K-feldspar, sillimanite, and silicate melt in the metamorphic core of the Himalaya, and outline the microstructural criteria used to distinguish peritectic K-feldspar from K-feldspar grains formed during melt crystallization. We have characterized four stages of microstructural evolution in selected psammitic and pelitic samples from the Langtang and Everest regions: (a) K-feldspar nucleates epitaxially on plagioclase while intergrowths of fibrolitic sillimanite and the remaining hydrous melt components replace muscovite. (b) In quartzofeldspathic domains, K-feldspar replaces plagioclase by K+–Na+ cation exchange, while melt and intergrowths of sillimanite+quartz form in the aluminous domains. (c) At 7–8 vol.% melt generation, the system evolves from a closed to open system and all phases coarsen by up to two orders of magnitude, resulting in large K-feldspar porphyroblasts. (d) Preferential crystallization of residual melt on K-feldspar porphyroblasts and coarsened quartz forms an augen gneiss texture with a monzogranitic-tonalitic matrix that contains intergrowths of sillimanite+tourmaline+muscovite+apatite. Initial poikiloblasts of peritectic K-feldspar trap fine-grained inclusions of quartz and biotite by replacement growth of matrix plagioclase. During subsequent coarsening, peritectic K-feldspar grains overgrow and trap fabric-aligned biotite, resulting in a core to rim coarsening of inclusion size. These microstructural criteria enable a mass balance of peritectic K-feldspar and sillimanite to constrain the amount of free H2O present during muscovite dehydration. The resulting modal proportion of K-feldspar in the Himalayan metamorphic core requires vapour-absent conditions during muscovite dehydration melting and leucogranite formation, indicating that the generation of large volumes of granitic melts in orogenic belts is not necessarily contingent on an external source of fluids.  相似文献   

3.
Seven distinct phases of Variscan two-mica granite are recognized in the Guarda-Sabugal area. They intruded the Cambrian schist-metagraywacke complex, crystallized in the middle crust, and are syn- to late-D3 (309.2 ± 1.8 Ma), late-D3 (304–300 Ma) and late- to post-D3 (299 ± 3 Ma; ID-TIMS ages on zircon and monazite). Two of the granites, G2 and G5, are close in age and have similar Sr, Nd and O isotope characteristics but contrasting whole rock and mineral features and formed by sequential increasing degree of partial melting of a common metasedimentary protolith. During sequential melting Ti, total Fe, Mg, Ca, Zr, Zn, Sr, Ba and REE contents and (La/Yb)N increase and Si and Rb contents decrease, plagioclase becomes richer in anorthite and biotite and muscovite richer in Ti and Mg. Each of these granites evolved subsequently by fractional crystallization of quartz, K-feldspar, plagioclase, biotite and ilmenite, defining separate series G2–G3–G7 and G5–G6 containing late Sn-bearing differentiates. Two other granites G1 and G4 represent distinct pulses of magma with individual fractionation trends for major and trace elements and distinct (87Sr/86Sr)300, ?Nd300 and δ18O values.  相似文献   

4.
Subsolidus and melting reactions involving calcic plagioclase in pelitic assemblages in the K-Na-Ca model system occur at higher temperatures than their K-Na counterparts. For the most calcic plagioclase compositions observed in high-grade pelitic rocks (An25-An40) the equilibria are rarely extended by more than 30 ° C above those in KA1O2-NaAlO2-Al2O3-SiO2-H2O, although all discontinuities in facies inferred for the K-Na system are continuously displaced when they involve Ca-bearing plagioclase. The maximum pressure-temperature overlap between muscovite dehydration and initial melting reactions occurs in the pressure range of 4–6 kbar between about 640 ° and 720 ° C. This provides optimum conditions for anatectic melt generation in felsic rocks of the appropriate compositions progressively metamorphosed in kyanite-sillimanite facies series. Progressive regional metamorphism at pressures of 2–4 kbar, corresponding to andalusite-sillimanite facies series, shows little overlap between muscovite dehydration and initial melting reactions. Consequently anatectic melt generation in andalusite-sillimanite facies series would require the participation of biotite in dehydration-melting reactions. Felsic intrusive rock in andalusite-sillimanite terranes could have risen upward from their anatectic sites in high grade kyanite-sillimanite facies series at depth. Many andalusite-sillimanite facies series terranes culminating in migmatites could represent upward movement of kyanite-sillimanite facies series rocks to shallower depths with uplift rates faster than cooling rates.  相似文献   

5.
本文对丹凤地区秦岭岩群含柯石英超高压变质地体长英质片麻岩中的混合岩化长英质浅色体和含石榴子石暗色包体的花岗质脉体进行了详细的矿物学、地球化学和锆石U-Pb年代学以及Lu-Hf同位素研究。其中,长英质浅色体显示了近原位熔融的高硅、富钾的过铝质花岗岩地球化学特征;锆石的CL图像呈灰黑色,均匀无结构或云雾状内部结构,Th/U比值0. 008,并含有钾长石、斜长石、石英和磷灰石等包裹体,显示深熔锆石的特征;花岗质脉体暗色包体中的石榴子石显示核-边成分环带,其中核部成分与秦岭岩群长英质片麻岩中石榴子石成分一致,边部Sps含量升高,显示熔体改造或退变质扩散特征,寄主花岗质脉体显示重稀土强烈亏损的与石榴子石平衡的熔体特征,指示它们是秦岭岩群含石榴子石长英质片麻岩部分熔融的产物。锆石LA-ICP-MS定年得到长英质浅色体和花岗质脉体的结晶年龄分别为445±4Ma和420±1Ma,明显晚于本区的超高压变质时代,而与折返过程中麻粒岩相和角闪岩相退变质叠加的时代基本一致。结合区域地质和前人的研究成果,提出秦岭岩群在深俯冲板块的折返过程中,分别在445Ma和420Ma发生了两期部分熔融作用。  相似文献   

6.
In the Segura area, Variscan S-type granites, aplite veins and lepidolite-subtype granitic aplite-pegmatite veins intruded the Cambrian schist-metagraywacke complex. The granites are syn D3. Aplite veins also intruded the granites. Two-mica granite and muscovite granite have similar ages of 311.0 ± 0.5 Ma and 312.9 ± 2.0 Ma but are not genetically related, as indicated by their geochemical characteristics and (87Sr/86Sr)311 values. They correspond to distinct pulses of magma derived by partial melting of heterogeneous metapelitic rocks. Major and trace elements suggest fractionation trends for: (a) muscovite granite and aplite veins; (b) two-mica granite and lepidolite-subtype aplite-pegmatite veins, but with a gap in most of these trends. Least square analysis for major elements, and modeling of trace elements, indicate that the aplite veins were derived from the muscovite granite magma by fractional crystallization of quartz, plagioclase, K-feldspar and ilmenite. This is supported by the similar (87Sr/86Sr)311 and δ18O values and the behavior of P2O5 in K-feldspar and albite. The decrease in (87Sr/86Sr)311 and strong increase (1.6‰) in δ18O from two-mica granite to lepidolite-subtype aplite-pegmatite veins, and the behaviors of Ca, Mn and F of hydroxylapatite indicate that these veins are not related to the two-mica granite.  相似文献   

7.
Advances in field observations and experimental petrology on anatectic products have motivated us to investigate the geochemical consequences of accessory mineral dissolution and nonmodal partial melting processes. Incorporation of apatite and monazite dissolution into a muscovite dehydration melting model allows us to examine the coupling of the Rb-Sr and Sm-Nd isotope systems in anatectic melts from a muscovite-bearing metasedimentary source. Modeling results show that (1) the Sm/Nd ratios and Nd isotopic compositions of the melts depend on the amount of apatite and monazite dissolved into the melt, and (2) the relative proportion of micas (muscovite and biotite) and feldspars (plagioclase and K-feldspar) that enter the melt is a key parameter determining the Rb/Sr and 87Sr/86Sr ratios of the melt. Furthermore, these two factors are not, in practice, independent. In general, nonmodal partial melting of a pelitic source results in melts following one of two paths in εNd-87Sr/86Sr ratio space. A higher temperature, fluid-absent path (Path 1) represents those partial melting reactions in which muscovite/biotite dehydration and apatite but not monazite dissolution play a significant role; the melt will have elevated Rb/Sr, 87Sr/86Sr, Sm/Nd, and εNd values. In contrast, a lower temperature, fluid-fluxed path (Path 2) represents those partial melting reactions in which muscovite/biotite dehydration plays an insignificant role and apatite but not monazite stays in the residue; the melt will have lower Rb/Sr, 87Sr/86Sr, Sm/Nd, and εNd values than its source. The master variables controlling both accessory phase dissolution (and hence the Sm-Nd system), and melting reaction (and hence the Rb-Sr systematics) are temperature and water content. The complexity in Sr-Nd isotope systematics in metasediment-derived melts, as suggested in this study, will help us to better understand the petrogenesis for those granitic plutons that have a significant crustal source component.  相似文献   

8.
Time studies were performed in the quinary system Qz-Or-Ab-An-H2O at kbars and T=665 ° and 660 ° C. Starting material was a mixture of quartz, alkali feldspar Or80 and plagioclase An31. The compositions of plagioclases of run products were determined and compared with the plagioclase of stable solidus conditions.The solidus of the granite system was fixed at P HäO=5 kbars using various plagioclase — and appropriate alkali feldspar — compositions besides quartz in the starting mixture (Fig. 1).The results of time studies (Table 3 and Fig. 3) reveal metastable melting in the granite system Qz-Or-Ab-An-H2O. Plagioclase melts almost stoichiometrically. The new plagioclase compositions formed during melting of cotectic compositions approach the theoretically expected stable plagioclase compositions only extremely slowly. An extrapolation of the data achieved in run times of 5–1,500 h indicates attainment of equilibrium after 1014 years. Metastable melting of granitic compositions is not only considered as an experimental problem but also as a rock forming process in nature.  相似文献   

9.
During equilibration of K-feldspar, quartz and muscovite with dilute KCl-solutions, the change in pH of the solution was measured as a function of time. The resulting equilibrium constant, K T = aK + /aH +, is 104.21±0.06, 105.86±0.03 and 106.01±0.03 at 300, 60 and 30° C respectively (standard states at 1 bar) and are consistent with the best higher temperature data. At 30° C this constant is consistent with the aK + /aH + ratio of seawater. From K T and the activity of K + in seawater, a pH of 8.2 is calculated, essentially identical with the pH which results from dissolution of CaCO3 under atmospheric CO2-pressure. Consequently, detrital K-feldspar, quartz, muscovite, and calcite are stable in seawater. Apparently, the seawater pH is controlled by CaCO3 as well as K-feldspar, quartz and muscovite. Independently both equilibria show virtually the same pH, within the variability due to disordering, solid solution and surface energy effects.Assuming that the K-concentrations of pore solutions vary between about 4000 and 40 ppm, these solutions have alkalic pH-values in the temperature range between 30 and 300° C if K-feldspar, quartz and muscovite are present. In limestones the pH is fixed by the dissociation of CaCO3; the occasionally observed formation of K-feldspar in these rocks requires a minimum K-concentration of approximately 4 ppm.

Die Untersuchungen wurden am Department of Mineralogy and Geochemistry der Pennsylvania State University durchgeführt. Der erste Autor (H. E. Usdowski) bedankt sich für die freundliche Aufnahme und die ausgezeichneten Arbeitsmöglichkeiten. Besonderer Dank gilt Dr. George Helz für viele Diskussionen und manche Hilfe im Labor. Die Deutsche Forschungsgemeinschaft hat die Untersuchungen durch einen Forschungsauftrag unterstützt.  相似文献   

10.
The Shexian gneissic granodiorite in southern Anhui trends NE 55° from Shexian in the west to Guitoujian in the east with a length of 22 km and an outcrop area of 32 km. It was considered formerly to be Caledonian on the basis of a biotite K-Ar age of 474 Ma (1982). However, new evidence indicates that it may be Early Jinning in age as shown by: (1) it is found intruding into the Mid-Proterozoic Shangxi Group and is unconformably overlain by the Sinian Xiuning Formation, and (2) a zircon U-Th-Pb age of 928 Ma is obtained for the pluton. The pluton is composed of plagioclase (An=27.37%), K-feldspar(14%), biotite(16%) and quartz(32%). Accessory minerals are ilmenite (150g/T), xenotime (15g/T). garnet(25g/T), monazite(10g/T), zircon (20g/T) and apatite (104g/T). Petrochemical characteristics of the intrusion are:(l) Al-enrichment (A/NKC=1.30); (2) H2O enrichment (H2O= 1.74%); and (3) low oxidation index (f ’=0.10). It belongs to the continental crust transformation type as evidenced by: (1) MF and Mg/Y values of biotite are 0.41 and 0.31 respectively; (2) (87Sr/86Sr)=0.71119; (3) δ Eu=0.52; and (4) A/NKC=130. The Shexian pluton is therefore considered as a product of melting of phyllite at depth in the light of similarities in trace element and REE contents with the phyllite of the Banxi Group. Calculations of REE batch partial melting indicate that it may have resulted from 75% melting of the Banxi phyllite.  相似文献   

11.
ABSTRACT

The Sarduiyeh granitoid (SG) is intruded in the southeastern part of the Dehaj-Sarduiyeh volcano-sedimentary belt in the southeastern end of the Urumieh-Dokhtar Magmatic Arc (UDMA) in Iran. The medium-to-coarse-grained granitoid unit, with granular texture consists mainly of diorite, tonalite, granodiorite and monzogranitic rocks. Mineralogically, these rocks consist mainly of plagioclase, K-feldspar, quartz, biotite and hornblende. The whole rock geochemical analyses indicates that the SG is calc-alkaline, I-type, metaluminous, enriched in large ion lithophile elements (LILE; such as K, Cs, Pb) and depleted in high field strength elements (HFSE; such as Ti, Nb, Ta, Zr). Chondrite normalized plot of SG rare earth elements (REE) show light rare earth element enrichments with (LaN/YbN = 2.44–8.68) and flat heavy rare earth element patterns with (GdN/YbN = 1.02–1.36). The rather high Y (av. 19.35 ppm), low Sr content (av. 293.76 ppm) and low Cr and Ni contents (av. 20.1 and 4.69 ppm, respectively) of the SG demonstrate its normal calc-alkaline and non-adakitic nature, the features of Jebal Barez-type granitoids. The geochemical characteristics and isotopic composition, low ISr (0.7046–0.7049) and positive ?tNd (+3.4 to +4.03) values, of the SG suggest that its parental magma formed as a result of partial melting from metabasic rocks of lower crust in a subduction-related arc setting. Fractionation of an assemblage dominated by plagioclase, K-feldspar, amphibole and magnetite may have been responsible for the evolution of the SG magma. U-Pb zircon geochronology gives an age of 27.95 ± 0.27 Ma for the SG, suggesting that the final collision between the Arabian plate and Central Iranian microcontinent may have happened in the Late Oligocene.  相似文献   

12.
We investigate the inclusions hosted in peritectic garnet from metapelitic migmatites of the Kinzigite Formation (Ivrea Zone, NW Italy) to evaluate the starting composition of the anatectic melt and fluid regime during anatexis throughout the upper amphibolite facies, transition, and granulite facies zones. Inclusions have negative crystal shapes, sizes from 2 to 10 μm and are regularly distributed in the core of the garnet. Microstructural and micro‐Raman investigations indicate the presence of two types of inclusions: crystallized silicate melt inclusions (i.e., nanogranitoids, NI), and fluid inclusions (FI). Microstructural evidence suggests that FI and NI coexist in the same cluster and are primary (i.e., were trapped simultaneously during garnet growth). FI have similar compositions in the three zones and comprise variable proportions of CO2, CH4, and N2, commonly with siderite, pyrophyllite, and kaolinite, suggesting a COHN composition of the trapped fluid. The mineral assemblage in the NI contains K‐feldspar, plagioclase, quartz, biotite, muscovite, chlorite, graphite and, rarely, calcite. Polymorphs such as kumdykolite, cristobalite, tridymite, and less commonly kokchetavite, were also found. Rehomogenized NI from the different zones show that all the melts are leucogranitic but have slightly different compositions. In samples from the upper amphibolite facies, melts are less mafic (FeO + MgO = 2.0–3.4 wt%), contain 860–1700 ppm CO2 and reach the highest H2O contents (6.5–10 wt%). In the transition zone melts have intermediate H2O (4.8–8.5 wt%), CO2 (457–1534 ppm) and maficity (FeO + MgO = 2.3–3.9 wt%). In contrast, melts at granulite facies reach highest CaO, FeO + MgO (3.2–4.7 wt%), and CO2 (up to 2,400 ppm), with H2O contents comparable (5.4–8.3 wt%) to the other two zones. Our results represent the first clear evidence for carbonic fluid‐present melting in the Ivrea Zone. Anatexis of metapelites occurred through muscovite and biotite breakdown melting in the presence of a COH fluid, in a situation of fluid–melt immiscibility. The fluid is assumed to have been internally derived, produced initially by devolatilization of hydrous silicates in the graphitic protolith, then as a result of oxidation of carbon by consumption of Fe3+‐bearing biotite during melting. Variations in the compositions of the melts are interpreted to result from higher T of melting. The H2O contents of the melts throughout the three zones are higher than usually assumed for initial H2O contents of anatectic melts. The CO2 contents are highest at granulite facies, and show that carbon‐contents of crustal magmas are not negligible at high T. The activity of H2O of the fluid dissolved in granitic melts decreases with increasing metamorphic grade. Carbonic fluid‐present melting of the deep continental crust represents, together with hydrate‐breakdown melting reactions, an important process in the origin of crustal anatectic granitoids.  相似文献   

13.
Cordierite‐bearing anatectic rocks inform our understanding of low‐pressure anatectic processes in the continental crust. This article focuses on cordierite‐bearing lithologies occurring at the upper structural levels of the Higher Himalayan Crystallines (eastern Nepal Himalaya). Three cordierite‐bearing gneisses from different geological transects (from Mt Everest to Kangchenjunga) have been studied, in which cordierite is spectacularly well preserved. The three samples differ in terms of bulk composition likely reflecting different sedimentary protoliths, although they all consist of quartz, alkali feldspar, plagioclase, biotite, cordierite and sillimanite in different modal percentages. Analysis of the microstructures related to melt production and/or melt consumption allows the distinction to be made between peritectic and cotectic cordierite. The melt productivity of different prograde assemblages (from two‐mica metapelite/metagreywacke to biotite‐metapelite) has been investigated at low‐pressure conditions, evaluating the effects of muscovite v. biotite dehydration melting on both mineral assemblages and microstructures. The results of the thermodynamic modelling suggest that the mode and type of the micaceous minerals in the prograde assemblage is a very important parameter controlling the melt productivity at low‐pressure conditions, the two‐mica protoliths being significantly more fertile at any given temperature than biotite gneisses over the same temperature interval. Furthermore, the cordierite preservation is promoted by melt crystallization at a dry solidus and by exhumation along P‐T paths with a peculiar dP/dT slope of about 15–18 bar °C?1. Overall, our results provide a key for the interpretation of cordierite petrogenesis in migmatites from any low‐P regional anatectic terrane. The cordierite‐bearing migmatites may well represent the source rocks for the Miocene andalusite‐bearing leucogranites occurring at the upper structural levels of the Himalayan belt, and low‐P isobaric heating rather than decompression melting may be the triggering process of this peculiar peraluminous magmatism.  相似文献   

14.
Kokchetavite, a new polymorph of K-feldspar (KAlSi3O8), has been identified as micrometer-size inclusions in clinopyroxene and garnet in a garnet-pyroxene rock from the Kokchetav ultrahigh-pressure terrane, Kazakhstan. Kokchetavite has a hexagonal structure with a =5.27(1) Å, c=7.82(1) Å, V=188.09 Å3, Z=1, and is found to be associated with phengite + /-cristobalite (or quartz) + siliceous glass ± phlogopite/titanite/calcite/zircon, occurring as multi-phase inclusions in clinopyroxene and garnet. It is concluded that kokchetavite could not be an exsolution phase in host minerals. Instead, it might be metastably precipitated from an infiltrated K-rich melt during rock exhumation. Alternatively, although less likely, kokchetavite might be derived from dehydration of K-cymrite, which, in turn, was formed at high pressures. In either case, kokchetavite is a metastable polymorph of K-feldspar.  相似文献   

15.
Partial melting experiments on plagioclase (An60) and diopside have been carried out using pairs of large crystals to investigate textures and kinetics of melting. The experiments were done at one atmosphere pressure as a function of temperature (1,190–1,307° C) and time (1.5–192 h). Melting took place mainly at the plagioclase-diopside contact planes. Reaction zones composed of fine mixtures of calcic plagioclase and melt were developed from the surface of the plagioclase crystal inward. There exists a critical temperature, below which only a few % melting can occur over the duration of the experiments. This sluggish melting is caused by slow NaSi-CaAl diffusion in plagioclase, because the plagioclase crystal must change its composition to produce albite-rich cotectic melts. Diffusion in the solid also affects the chemical composition of the melts. During initial melting, potassium is preferentially extracted from plagioclase because K-Na diffusion in plagioclase is faster than that of NaSi-CaAl. This also causes a shift in the cotectic compositions. Above the critical temperature, on the other hand, melting is promoted by a metastable reaction in which the plagioclase composition does not change, and which produces melts with compositional gradients along the original An60-diopside tie line. The critical temperature is determined by the intersection of the cotectic and the An60-diopside tie line. Interdiffusion coefficients of plagioclase-diopside components in the melt are estimated from melting rates above the critical temperature by using a simplified steady-state diffusion model (e.g., 10–8 cm2/sec at 1,300° C).Many examples of reaction zones due to partial melting have been described as spongy or fingerprint-like textures in xenoliths. Metastable melting above the critical temperature is considered to take place in natural melting where there is a high degree of melting. However, we cannot exclude the possibility of disequilibrium created by sluggish melting controlled by diffusion in the minerals. If melting occurs close to the solidus, this process can be important even for partial melting in the upper mantle.  相似文献   

16.
This study uses field, microstructural and geochemical data to investigate the processes contributing to the petrological diversity that arises when granitic continental crust is reworked. The Kinawa migmatite formed when Archean TTG crust in the São Francisco Craton, Brazil was reworked by partial melting at ~730 °C and 5–6 kbar in a regional‐scale shear zone. As a result, a relatively uniform leucogranodiorite protolith produced compositionally and microstructurally diverse diatexites and leucosomes. All outcrops of migmatite display either a magmatic foliation, flow banding or transposed leucosomes and indicate strong, melt‐present shearing. There are three types of diatexite. Grey diatexites are interpreted to be residuum, although melt segregation was incomplete in some samples. Biotite stable, H2O‐fluxed melting is inferred via the reaction Pl + Kfs + Qz + H2O = melt and geochemical modelling indicates 0.35–0.40 partial melting. Schlieren diatexites are extremely heterogeneous; residuum‐rich domains alternate with leucocratic quartzofeldspathic domains. Homogeneous diatexites have the highest SiO2 and K2O contents and are coarse‐grained, leucocratic rocks. Homogeneous diatexites, quartzofeldspathic domains from the schlieren diatexites and the leucosomes contain both plagioclase‐dominated and K‐feldspar‐dominated feldspar framework microstructures and hence were melt‐derived rocks. Both types of feldspar frameworks show evidence of tectonic compaction. Modelling the crystallization of an initial anatectic melt shows plagioclase appears first; K‐feldspar appears after ~40% crystallization. In the active shear zone setting, shear‐enhanced compaction provided an essentially continuous driving force for segregation. Thus, Kinawa migmatites with plagioclase frameworks are interpreted to have formed by shear‐enhanced compaction early in the crystallization of anatectic melt, whereas those with K‐feldspar frameworks formed later from the expelled fractionated melt. Trace element abundances in some biotite and plagioclase from the fractionated melt‐derived rocks indicate that these entrained minerals were derived from the wall rocks. Results from the Kinawa migmatites indicate that the key factor in generating petrological diversity during crustal reworking is that shear‐enhanced compaction drove melt segregation throughout the period that melt was present in the rocks. Segregation of melt during melting produced residuum and anatectic melt and their mixtures, whereas segregation during crystallization resulted in crystal fractionation and generated diverse plagioclase‐rich rocks and fractionated melts.  相似文献   

17.
The melting of plagioclase and quartz has been investigated at P H2O =2kb. A single crystal of plagioclase was surrounded by quartz powder and water. A reaction rim consisting of glass and of An-rich plagioclase developed around unchanged starting plagioclase. Microprobe determinations of melt and coexisting plagioclase compositions reveal a strong fractionation of plagioclase components between melt and new plagioclase. For example at 850° C the approximate X An of melt is 0.3 and that of plagioclase is 0.8. The temperature interval between beginning of melting and complete melting of cotectic compositions is 100° C or more for quartz-plagioclase mixtures with plagioclases between An 40 and An 75. In comparison to the system Ab-An-H2O the plagioclase melting loop is somewhat wider in the investigated system Qz-Ab-An-H2O but the temperature interval is much smaller (100° C) than in the system Ab-An-H2O (200° C). The solidus data indicated by the new plagioclase compositions are practically identical with those observed in beginning of melting experiments. The results show that fractionation of plagioclase components between partial melts and restite plagioclase can be more pronounced in multi-component rocks than in the pure plagioclase system. This finding is important for the development of albite rich rocks from more basic compositions.  相似文献   

18.
氟碳铈钡矿(Cebaite)的新资料   总被引:1,自引:0,他引:1       下载免费PDF全文
氟碳铈钡矿产于白云鄂博铁铌稀土矿床中。1965年发现于西矿区。贵阳地球化学所稀有矿物研究组(1972)和彭志忠、沈今川等(1980)及后来李方华等对该矿物进行了矿物学研究。本文报道了采自东矿区几个样品的分析测定结果。 一号氟碳铈钡矿(样品编号:东1606),产于东矿体靠近上盘的钠辉石型矿石中,与钠辉石、萤石、重晶石等矿物共生,矿物呈粒状或板状,大小不一,集合体大者直径可达数毫米。  相似文献   

19.
 The stability of pargasite in the presence of excess quartz has been determined in the range of 0.5–6.0 kbar and 500–950 °C in the system Na2O– CaO–MgO–Al2O3–SiO2–H2O, using synthetic minerals. The experimental results from this study indicate the presence of two distinct mineral assemblage regions: (1) a high temperature supersolidus region containing tremolitic amphibole+melt+quartz; (b) a low temperature subsolidus region consisting of Al-rich amphibole+plagioclase+enstatite+quartz. Compositional reversals have been determined for the following three equilibria: (a) 2 pargasite+9 quartz=tremolite+4 plagioclase (An50)+1.5 enstatite+H2O, (b) 2 pargasite+10 quartz=tremolite+4 plagioclase (An50)+talc, and (c) pargasite+diopside+5 quartz=tremolite+2 plagioclase (An50). These experiments indicate a continuous change of amphibole composition from pargasite to tremolite with increasing temperature, and an opposite effect with increasing pressure. The third equilibria is used to constrain a site-mixing model for the pargasitic amphiboles, which favor a single-coupled NaA-AlT1 site mixing. The thermochemical data for pargasite estimated from the reversal data of the three equilibrium reactions is estimated as for ΔG 0 f ,Pg=−12022.11±5.2 kJ mole-1, and S 0 Pg=591.7 ±7.9 JK-1 mole-1. Received: 31 July 1995/Accepted: 3 June 1996  相似文献   

20.
The synthetic solid solutions between lead fluorapatite and lead fluorvanadate apatite, Pb10[(PO4)6−x (VO4) x ]F2 with x equal to 0, 1, 2, 3, 4, 5, and 6, were compressed up to about 9 GPa at ambient temperature by using a diamond-anvil cell coupled with synchrotron X-ray radiation. A second-order Birch–Murnaghan equation of state was used to fit the data. As the substitution of the PO4 3− cations by the VO4 3− cations progresses, the isothermal bulk modulus steadily decreases, with a maximum reduction of about 16% (from 68.4(16) GPa for Pb10(PO4)6F2 to 57.2(28) GPa for Pb10(VO4)6F2). For the entire composition range, the a-axis dimension remains more compressible than the c-axis dimension, with the ratio of the axial bulk moduli (K Tc :K Ta ) larger than 1. The ratio of K Tc to K Ta increases from about 1.04(4) to 1.23(14) as the composition parameter x increases from 0 to 6, suggesting that the apatite solid solutions Pb10[(PO4)6−x (VO4) x ]F2 become more elastically anisotropic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号