首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular data from a large set of source rock, crude oil and oil-containing reservoir rock samples from the Tarim Basin demonstrate multiple sources for the marine oils in the studied areas of this basin. Based on gammacerane/C31 hopane and C28/(C27 + C28 + C29) sterane ratios, three of the fifteen crude oils from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the other crude oils from the Tazhong Uplift and all 39 crude oils from the Tahe oilfield in the Tabei Uplift correlate with Middle-Upper Ordovician source rocks. These two ratios further demonstrate that most of the free oils and nearly all of the adsorbed and inclusion oils in oil-containing reservoir rocks from the Tazhong Uplift correlate with Cambrian-Lower Ordovician source rocks, while the free and inclusion oils in oil-containing carbonates from the Tahe oilfield correlate mainly with Middle-Upper Ordovician source rocks. This result suggests that crude oils in the Tazhong Uplift are partly derived from the Cambrian-Lower Ordovician source rocks while those in the Ordovician carbonate reservoirs of Tahe oilfield are overwhelmingly derived from the Middle-Upper Ordovician source rocks.The scatter of C23 tricyclic terpane/(C23 tricyclic terpane + C30 17α,21β(H)-hopane) and C21/(C21 + ΣC29) sterane ratios for the free and inclusion oils from oil-containing carbonates in the Tahe oilfield possibly reflects the subtle organofacies variations in the source rocks, implying that the Ordovician reservoirs in this oilfield are near the major source kitchen. In contrast, the close and positive relationship between these two ratios for oil components in the oil-containing reservoir rocks from the Tazhong Uplift implies that they are far from the major source kitchen.  相似文献   

2.
Three compositionally distinctive groups of oils identified in central Montana by biomarker analyses are also recognized by the unique compositions of their light hydrocarbon (gasoline range) fraction. The majority of oils produced from Paleozoic pools (Pennsylvanian Tyler–Amsden interval) group into one broad category based on the distribution of C20–C40 biomarkers. These oils not only have the lowest Paraffin Indices and relative concentrations of normal heptane, but are readily distinguishable from the other compositional groups by using selected “Mango” parameters. However, the biomarker-based subdivision of this group into at least two sub-families is not reflected in the gasoline range fraction, suggesting little effect of source rock host lithology on the distribution of C5–C8 hydrocarbons. Oils occurring predominantly in Jurassic–Cretaceous reservoirs display different biomarker and gasoline range characteristics, including Paraffin Indices, K1 parameter and relative concentrations of C7 compounds, and are classified in two separate compositional categories. In contrast to oils from the Tyler–Amsden interval, the oils produced from the Mesozoic strata are amongst the most mature oils in the study area. The unique biomarker/light hydrocarbon signatures are likely due to different source organic matter. Secondary alteration of oil due to biodegradation and migration, although recognized, appears less significant. The results indicate the overall usefulness of gasoline range compositions in delineating compositional affinities of crude oils in central Montana, clearly suggesting that the oils found in Paleozoic and Mesozoic reservoirs belong to different petroleum systems.  相似文献   

3.
A suite of 27 oils from the Qinjiatun–Qikeshu oilfields in the Lishu Fault Depression of the Songliao Basin was analyzed using whole oil gas chromatography. In combination with the relative distribution of C27, C28, and C29 regular steranes, detailed geochemical analyses of light hydrocarbons in oil samples revealed crude oils characterized by the dual input of lower aquatic organisms and higher terrestrial plants. Several light hydrocarbon indicators suggest that the liquid hydrocarbons have maturities equivalent to vitrinite reflectances of around 0.78%–0.93%. This is consistent with the maturity determination of steranes C29 20S/(20S + 20R) and C29 ααβ/(ααα + αββ). Crude oils derived from the two distinct oilfields likely both have source rocks deposited in a lacustrine environment based on light hydrocarbon parameters and on higher molecular weight hydrocarbon parameters. The results show that light hydrocarbon data in crude oils can provide important information for understanding the geochemical characteristics of the Qinjiatun–Qikeshu oils during geologic evolution.  相似文献   

4.
The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) has been studied in oil columns from the Liaohe basin, NE China, characterized by varied degrees of biodegradation. The Es3 oil column has undergone light to moderate biodegradation – ranging from levels 2 to 5 on the [Peters, K.E., Moldowan, J.M., 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, NJ, p. 363] scale (abbreviated as ‘PM level’) – while the shallower Es1 column has undergone more severe biodegradation, ranging from PM level 5 to 8. Both columns show excellent vertical biodegradation gradients, with degree of biodegradation increasing with increasing depth toward the oil–water contact (OWC). The compositional gradients in the oil columns imply mass transport control on degradation rates, with degradation occurring primarily at the OWC. The diffusion of hydrocarbons to the OWC zone will be the ultimate control on the maximum degradation rate. The chemical composition and physical properties of the reservoired oils, and the ‘degradation sequence’ of chemical components are determined by mixing of fresh oil with biodegraded oil.The PAH concentrations and molecular distributions in the reservoired oils from these biodegraded columns show systematic changes with increasing degree of biodegradation. The C3+-alkylbenzenes are the first compounds to be depleted in the aromatic fraction. Concentrations of the C0–5-alkylnaphthalenes and the C0–3-alkylphenanthrenes decrease markedly during PM levels 3–5, while significant isomer variations occur at more advanced stages of biodegradation (>PM level 4).The degree of alkylation is a critical factor controlling the rate of biodegradation; in most cases the rate decreases with increasing number of alkyl substituents. However, we have observed that C3-naphthalenes concentrations decrease faster than those of C2-naphthalenes, and methylphenanthrenes concentrations decrease faster than that of phenanthrene. Demethylation of a substituted compound is inferred as a possible reaction in the biodegradation process.Differential degradation of specific alkylated isomers was observed in our sample set. The relative susceptibility of the individual dimethylnaphthalene, trimethylnaphthalene, tetramethylnaphthalene, pentamethylnaphthalene, methylphenanthrene, dimethylphenanthrene and trimethylphenanthrene isomers to biodegradation was determined. The C20 and C21 short side-chained triaromatic steroid hydrocarbons are degraded more readily than their C26–28 long side-chained counterparts. The C21–22-monoaromatic steroid hydrocarbons (MAS) appear to be more resistant to biodegradation than the C27–29-MAS.Interestingly, the most thermally stable PAH isomers are more susceptible to biodegradation than less thermally stable isomers, suggesting that selectivity during biodegradation is not solely controlled by thermodynamic stability and that susceptibility to biodegradation may be related to stereochemical structure. Many commonly used aromatic hydrocarbon maturity parameters are no longer valid after biodegradation to PM level 4 although some ratios change later than others. The distribution of PAHs coupled with knowledge of their biodegradation characteristics constitutes a useful probe for the study of biodegradation processes and can provide insight into the mechanisms of biodegradation of reservoired oil.  相似文献   

5.
Twenty-seven heavy crude oils of diverse origin were geochemically assessed with respect to both bulk and mlecular composition for the purpose of identifying and quanttfying valid biomarker parameters for low maturity oils. The low thermal maturity level of many of these oils is evident from the bulk and alipathic chromatographic data, and oil sourced from both marine and terrigenous organic matter are represented. Selective metastable ion monitoring (SMIM) was employed to measure separately the distribution of C27, C28, and C29 sterane isomers. The useful maturity indicators include the C29 5α(H) 20S/20R ratio, the relative quantity of the biological sterane configuration in each of the total normal C27, C28, and C29 steranes, and the rearranged to normal sterane ratio. In addition, C27 rearranged steran es appear to form at a faster rate than C28 or C29 rearranged steranes. However, the isomerization of the C27 biological component appears to occur at a slower rate than the C29 counterpart suggesting that the former may be used as a maturity parameter at higher levels of thermal maturation. In the triterpane distributions, the C27 trisnorhopane isomers and the moretane to hopane ratios appear to be both source and maturity related and cannot be used as successful maturity parameters in oils unless they share a common source. The C31+ hopane 22S/22R equilibrium ratio appears to increase with increasing molecular weight (C31–C34).  相似文献   

6.
The extent of sterane isomerisation reactions and the moretane/hopane ratios of 234 crude oils, taken world wide, from a wide variety of source rocks of differing geological ages, have been measured.This data indicates that in 78 crude oils derived from Tertiary source rocks, sterane isomerisation reactions as determined by the 20S/(20S + 20R) ration of the C29 5α(H), 14α(H), 17α(H) normal-steranes and the C29 iso/(iso + normal) ratio [iso = 5α (H), 14β(H), 17β(H)] are mainly incomplete and sometimes considerably so. In addition, the same crude oils have 17β(H), 21α(H)-moretane/17α(H), 21β(H)-hopane ratios which are significantly greater (predominantly in the range 0.10–0.30) than those of crude oils derived from older, mature source rocks (mainly less than 0.1).This data, for crude oils, lends support to the hypothesis, proposed by Mackenzie and McKenzie (1983) for source rock extracts, that the time/temperature constraints of sterane isomerisation reactions are such that the time available for isomerisation in Tertiary sediments is generally insufficient, despite generation of crude oil at relatively high temperatures.An alternative hypothesis is that the incomplete sterane isomerisation of Tertiary crude oils may be due to generation of these crude oils from their deltaic, land plant-containing source rocks under low heating conditions.A third hypothesis proposes that the Tertiary crude oils may have picked up the incompletely isomerised steranes from immature sediments during migration. Although possible in particular instances, such a mechanism does not appear to be generally applicable since, in that case, the phenomenon would then appear to be restricted to the Tertiary.The higher moretane/hopane ratios of the Tertiary crude oils could suggest that constraints, similar to those applying in sterane isomerisation, also operate in the conversion of moretane to 17α(H)-hopane.  相似文献   

7.
A new method has been devised, based on high resolution GLC component analyses of the C6-C7 hydrocarbons from shales and from crude oils, whereby composition parameters in an oil are compared with the corresponding parameters in a shale. Ideally, a given composition parameter should have the same value for a crude oil and the source rock which generated and expelled that crude oil. A Similarity Coefficient has been devised, to measure the degree of correlation between crude oil and source rock hydrocarbons or between the hydrocarbons from different groups of crude oils. The maximum value of the Similarity Coefficient is 1.00, and the theoretical minimum is a positive fraction close to zero. Based on the natural variation in composition of primary (not biodegraded) crude oils of the same basin and origin, it was found that if the Similarity Coefficient is about 0.80 or higher, correlation between the natural hydrocarbons considered is good. If the Similarity Coefficient is less than 0.73, correlation is poor.Based on strict rules for sample selection (e.g. maturity of shales and lack of biodegradation in the oils), ten presumed crude oil-source formation pairs were selected. Most of these pairs have high Similarity Coefficients of 0.80 or more. Erroneous crude oil-source rock combinations from areas with more than one source formation, as in West Texas, have low Similarity Coefficients. This indicates that the crude oil-source formation correlation method based on the Similarity Coefficient generally is functioning properly.  相似文献   

8.
The Masila Basin is an important hydrocarbon province in Yemen, but the origin of hydrocarbons and their generation history are not fully understood. In this regard, 10 crude oils from different petroleum reservoir sections in the Masila Basin were characterized by a variety of biomarker and non-biomarker parameters using GC, GC-MS and stable carbon isotope techniques. Oils from the Masila Basin display pristane/phytane (Pr/Ph) ratios ranging from 1.7 to 2.0, low sulfur content, high C35 homohopane index, relatively high C27 sterane concentrations and relatively high tricyclic terpanes suggesting a marine clay source rock that was deposited in mildly anoxic to suboxic conditions with dominantly algal organic matter. C29 20S/(20S + 20R) steranes and ββ/(ββ + αα) sterane ratios indicate that the Masila oils have reached peak oil window maturity. Another related feature of these oils is the absence of 18α (H)-oleanane, which suggests a source age older than Cretaceous. The carbon isotope compositions are similar to those of the potential source rocks, which range from −25.4‰ to −28.3‰, indicating a marine environment. The new data presented in this paper suggest that the Masila oils constitute one oil family and that the oil originated from the Upper Jurassic Madbi source rock in the basin.  相似文献   

9.
Paraffinic crude oils are designated ‘primary’ because their composition is very close or identical to that of the hydrocarbons extracted from the corresponding oil source rocks. Heavy and medium-gravity naphthenic crude oils, on the other hand, typically are quite different compositionally from hydrocarbon mixtures in either mature or immature shales.The normal paraffin carbon number odd/even ratio 2C29/(C28 + C30) of all the heavy to medium-gravity crude oils which could be analysed are in exactly the same range as is observed for the primary paraffinic crude oils, namely 0.95–1.42. The naphthene indices of the medium to heavy gravity naphthenic crude oils and of the primary paraffinic crude oils from the same area are identical or close. These facts are significant because both the n-paraffin carbon number odd/even ratio and the naphthene index of shale hydrocarbons are strongly depth and subsurface temperature dependent. The facts observed demonstrate beyond question that, in the same area, the paraffinic precursors of the heavy to medium-gravity naphthenic crude oils are generated and expelled in the identical depth range, and from the same mature relatively deep oil source beds as the primary paraffinic crude oils. Later, during and/or after a generally upward migration into oil reservoirs, the primary crude may be transformed compositionally into a naphthenic crude oil.In none of the five widely scattered oil basins studied are medium to heavy naphthenic crude oils found at temperatures greater than a limiting subsurface temperature. The abruptness of the temperature cutoff of the change in oil compositions in all five oil basins, as well as the average value of the cutoff temperature of 66°C (150°F), leaves no doubt that the mechanism of this crude oil transformation process is microbial.Optical activity, which was observed in narrow saturate hydrocarbon fractions of the 80–325°C range of all microbially transformed crude oils, but not in the primary untransformed oils, is strong additional evidence for the microbial nature of the crude oil transformation process. The observed optical activity is explained by the microbial digestion at different rates of optical antipodes present in the primary paraffinic crude oils.To gain perspective the vast scale of the microbial oil transformation process in nature is pointed out. Billions of tons of heavy to medium-gravity naphthenic crude oils, originating from the microbial transformation of primary paraffinic oils, are present in oil fields and tar sands all over the world.  相似文献   

10.
High-temperature gas chromatography (HTGC) has enhanced our ability to characterize hydrocarbons extending to C120 in crude oils. As a result, hydrocarbons in waxes (> C20) have been observed to vary significantly between crude oils, even those presumed to originate from the same source. Prior to this development, microcrystalline waxes containing hydrocarbons above C40 were not characterized on a molecular level due to the analytical limitations of conventional gas chromatography. Routine screenings of high pour-point crude oils by high-temperature gas chromatography has revealed that high molecular weight hydrocarbons (> C40) are very common in most oils and may represent 2% of the crude oil. Precise structures, origins, and significance of these high molecular weight compounds remain elusive. As a preliminary step to expand our knowledge of these compounds their general molecular structures and formulas have been investigated in this study. Initial results suggest that the major high molecular weight compounds include a homologous series of n-alkanes, methylbranched alkanes, alkylcyclopentanes, alkylcyclohexanes, alkylbenzenes and alkylcycloalkanes.  相似文献   

11.
Solid, liquid and gaseous hydrocarbons occur throughout the Dead Sea Basin (Israel and Jordan) both in surface exposures and in drillings. The unaltered asphalts and heavy oils are characterized by very high sulfur content (ca. 11%) with δ34S = +5% and δ13C = −28% to −29%, low content of n-paraffins, pristane to phytane ratio of 0.5 and by containing almost exclusively VO-porphyrins. The distribution of n-paraffins in samples from deep sources shows a smooth enveloped miximizing at C15–20. Surface and shallow samples show clear evidence of biodegradation. The ozokerite, known only from the east side of the basin, is composed primarily of long chain n-paraffins with a maximum at C39. The gases known from the southern margin of the basin are composed mostly of methane.The source for the bitumens is unknown. Two hypotheses are discussed. The first is that the asphalts and heavy oils represent an alteration products of crude oil which migrated into the basin or which might have been generated in the basin itself. The second hypothesis favors an origin from low temperature alteration of organic matter from a thermally immature source.  相似文献   

12.
Biodegraded oils are widely distributed in the Liaohe basin, China. In order to develop effective oil-source correlation tools specifically for the biodegraded oils, carbon isotopic compositions of individual n-alkanes from crude oils and their asphaltene pyrolysates have been determined using the gas chromatography–isotope ratio mass spectrometry technique. No significant fractionation in the stable carbon isotopic ratios of n-alkanes in the pyrolysates of oil asphaltenes was found for anhydrous pyrolysis carried out at temperatures below 340°C. This suggests that the stable carbon isotopic distribution of n-alkanes (particularly in the C16–C29 range) in the asphaltene pyrolysates can be used as a correlation tool for severely biodegraded oils from the Liaohe Basin. Comparison of the n-alkane isotopic compositions of the oils with those of asphaltene pyrolysates shows that this is a viable method for the differentiation of organic facies variation and post-generation alterations.  相似文献   

13.
This study deals with a detailed geochemical characterization of three crude oils from the Upper Indus Basin, Punjab, Pakistan. The samples were obtained from three productive oil fields of the Datta Formation (Jurassic), Lochhart (Palaeocene) and the Dhak Pass zone (Palaeocene). The GC parameters for and the bulk properties of Datta Formation oils are essentially coincident with those of the oils from the Dhak Pass Formation in the Upper Indus Basin, Pakistan and the oils likely originate from a marine source rock. In contrast, the Lockhart Formation oils show different behaviors and seem to be originated from dirty carbonate rocks although all three crude oils are mature, being of non-biodegraded and somewhat mixed organic matter origin. Low Pr/Ph values and high C35 homohopane index for the Lockhart Formation oils suggest a source of anoxic environment with low Eh while oils from the Datta Formation and Dhak Pass Formation showed different trends, i.e., lower values of C35 homohopane index indicating different depositional environment than oil from the Lockhart Formation. All three crude oils from the Upper Indus Basin are mature for the hopane ratios, i.e., Ts/Ts+Tm, C3222S/(S+R) and C30 αβ/(αβ+βα) and sterane ratios, i.e., C2922S/(S+R) and C29ββ/(ββ+αα) but oils from the Lockhart Formation seem to be less mature than those from the Palaeocene and Datta Formation according to plots like API° vs. homohopane Index, Pr/Ph vs. sterane. The relative composition of 5α(H), 14β(H), 17β(H)-24-ethylecholestanes and the C2920S/20S+20R index, indicate that all three crude oils are equally mature, which makes it unlikely with respect to the above said plots. This difference is may be due to the migratory chromatography which alters the concentrations of sterane and hoapnes and hence gives different results. These oils do not exhibit UCM and have complete n-alkane profiles indicating non-biodegradation.  相似文献   

14.
The Halahatang Depression in the Tabei Uplift of the Tarim basin is an active exploration area because it has substantial reservoir potential and contains or is near to many commercial oil fields. Geochemical analysis indicates that Halahatang oils were derived from marine carbonate source rocks deposited under anoxic reducing conditions. The maturities for Halahatang oils are corresponding to the peak of the oil window and slightly higher than the neighboring Tahe oils. The Halahatang oils feature low Pr/Ph, C21/C23 tricyclic terpane and, C28/C29 sterane ratios, high C29/C30 hopane and C35/C34 hopane ratios, a “V” shape in the distribution of C27–C28–C29 steranes and light carbon isotope ratios, similar to the Tahe oils and correlate well with the Middle-Upper Ordovician source rock. However, some source-related biomarker parameters imply a more reducing source organofacies with more zooplanktonic contribution than that for the Tahe oils.  相似文献   

15.
Characteristics have been studied of light hydrocarbons (C1–C7) from crude oils and source rocks ranging from Devonian to Triassic in age in the Jurong Basin where carbonate rocks are dominating. The results show that light hydrocarbon compositions (C1–C7) can be used to classify organic matter types and maturities as well as to make oil-source rock correlations. It is also an effective method in organic geochemical studies of oils, gases and source rocks in terrains of old carbonate rocks.  相似文献   

16.
This paper consists of two interrelated parts. In the first part, the influence of the composition of sediment organic matter on crude oil composition is discussed. The second part deals with the origin of normal paraffins in petroleum.Source beds with abundant terrestrial plant matter generate heavy hydrocarbons rich in five-ring naphthenes. Unless such source beds are exposed to a high temperature for a prolonged time, the oils released are also rich in five-ring naphthenes. Such oils are rare; thus far the only examples found are some Eocene Wilcox oils from the Texas Gulf Coast and some Eocene Green River oils from the Uinta Basin, Utah. Normally, oil source beds are not rich in terrestrial plant matter and the five-ring naphthene content of the source bed hydrocarbons, as well as that of the produced oils, is low.The n-paraffins generated by oil source beds rich in terrestrial plant matter are characterized by abnormally low (C21 + C22)/(C28 + C29) ratios of 0.6–1.2. In oils of dominantly marine origin, this ratio is in the range 1.5–5.0. The ratio of marine to terrestrial organic matter in source beds appears to influence both the naphthene composition and the n-paraffin composition of the generated oils.Evidence is presented that petroleum n-parainns originate from slow thermal cracking of fatty acids contained in fats and waxes. Reaction equations are discussed which explain the major geochemical observations, including the difference in carbon-number distribution of the assumed parental fatty acids and of their descendant n-paraffins. In normal oils, which originate mostly from fat rich marine organic matter, the n-paraffin concentration tapers off above C20. The molecular weight range of the fatty acids of plant waxes is considerably higher than that of fats. If plant waxes contribute strongly to the oil source material, the molecular weight distribution of the petroleum n-paraffins formed is abnormal and high carbon numbers in the C24-C32 range dominate.  相似文献   

17.
The solubility of a 44° API (0.806 sp. gr.) whole crude oil has been measured in methane with water present at temperatures of 50 to 250°C and pressures of 740 to 14,852 psi, as have the solubilities of two high molecular weight petroleum distillation fractions at temperatures of 50 to 250°C and pressures of 4482 to 25,266 psi. Both increases in pressure and temperature increase the solubility of crude oil and petroleum distillation fractions in methane, the effect of pressure being greater than that of temperature. Unexpectedly high solubility levels (0.5–1.5 grams of oil per liter of methane—at laboratory temperature and pressure) were measured at moderate conditions (50–200°C and 5076–14504 psi). Similar results were found for the petroleum distillation fractions, one of which was the highest molecular weight material of petroleum (material boiling above 266°C at 6 microns pressure). Unexpectedly mild conditions (100°C and 15,200 psi; 200°C and 7513 psi) resulted in cosolubility of crude oil and methane. Under these conditions, samples of the gas-rich phase gave solubility values of 4 to 5 g/l, or greater.Qualitative analyses of the crude-oil solute samples showed that at low pressure and temperature equilibration conditions, the solute condensate would be enriched in C5–C15 range hydrocarbons and in saturated hydrocarbons in the C15+ fraction. With increases in temperature and especially pressure, these tendencies were reversed, and the solute condensate became identical to the starting crude oil.The data of this study, compared to that of previous studies, shows that methane, with water present, has a much greater carrying capacity for crude oil than in dry systems. The presence of water also drastically lowers the temperature and pressure conditions required for cosolubility.The data of this and/or previous studies demonstrate that the addition of carbon dioxide, ethane, propane, or butane to methane also has a strong positive effect on crude oil solubility, as does the presence of fine grained rocks.The n-paraffin distributions (as well as the overall composition) of the solute condensates are controlled by the temperature and pressure of solution and exsolution, as well as by the composition of the original starting material. It appears quite possible that primary migration by gaseous solution could ‘strip’ a source rock of crude-oil like components leaving behind a bitumen totally unlike the migrated crude oil. The data of this study demonstrate previous criticisms of primary petroleum migration by gas solution are invalid; that primary migration by gaseous solution cannot occur because methane cannot dissolve sufficient volumes of crude oil or cannot dissolve the highest molecular weight components of petroleum (tars and asphaltenes).  相似文献   

18.
Peats in a sediment core from Ruoergai bog, which has a cold and moist plateau climate with major source input from herbaceous plants, have been studied by GC–MS in order to understand the composition and diagenetic processes of lipids in this depositional environment. Long chain components (C21–C35) predominate in the n-alkanes, n-alk-1-enes, n-fatty acids, n-alkan-2-ones and n-alkanols with a maximum of C31, C27, C22 or C24, C23 or C25 and C22, respectively. A herbaceous origin for these long chain compounds is suggested, and this is supported by their stable carbon isotopic compositions. Diterpenoid hydrocarbons with abietane, pimarane and kaurane skeletons, some of which have not been reported often in modern sediments, are prominent and are derived from higher plants. Several triterpenoid ketones and alcohols with oleanane or lupane skeletons, and a series of des-A-triterpenoid hydrocarbons which have not been reported often in modern sediments are also present, and are assigned to a higher plant source. Hopanoids, including their alkanes, alkenes, ketones, alcohols and esters, are abundant and of bacterial origin. Steroid ketones and alkanols are dominated by C29 homologues. C28 and C29 steroids are derived mainly from higher plants, whereas the C27 component is assigned to a microbial source. The presence of short-chain n-alkanes with no odd-even carbon predominance, bacterially derived fatty acids (C14, C15, iso- and unsaturated acids), n-alkan-2-ones, des-A-triterpenoid hydrocarbons, hopanoids and some steroid ketones indicate that intense microbial reworking of the organic matter has taken place in this depositional environment. The chemical and biochemical conversions of some cyclic alkenes to alkanes, such as tricyclic diterpenoids, tetracyclic terpenoids and steroid ketones, are also evident with depth. The dominance of C20 components in the diterpenoid hydrocarbons may reflect an oxidizing or reducing depositional condition.  相似文献   

19.
Based on quantitative GC-MS analysis of 40 crude oil samples collected from the south area of western Qaidam Basin,one of the largest saline lacustrine basins in China,the geochemical characteristics of aromatic hydrocarbons in oils were studied systematically in this paper.Among those constitutes,naphthalene(43% 59%),phenanthrene(12% 21%) and taromatic-sterane series(6% 28%) were the main ones of aromatic hydrocarbons.The ratio of aromatic hydrocarbon maturity parameter vs.saturated hydrocarbon maturity parameter C 29 20S/(20S+20R) shows that some aromatic hydrocarbon maturity parameters are not suitable for low-mature oils,including MPI,MNR,DNR,etc.Meanwhile,maturity parameters for dibenzothiophene and taromatic-sterane series are more appropriate for low maturity saline lacustrine crude oils.Based on the ratio of 4,6-DMDBT/1,4-DMDBT,the R c values are within the range of 0.59% 0.72%.However,the abundance of dibenzothiophene(DBT) is low,and the dibenzofuran(DBF) content is even lower,suggesting that the crude oils were formed in a saline lacustrine anaerobic environment.The high abundance of C 26 triaromatic steroid also indicates that the source material is brackish water-saline water with strong reducibility.  相似文献   

20.
Based on the compositions and distributions of biomarkers in thirty-five representative oil samples, oils from the Tarim Basin of northwestern China are mainly divided into two oil families. One oil family contains relatively low amounts of C15-C20 isoprenoid hydrocarbons and shows pristane predominance with Pr/Ph ratios ranging from 1.50 to 3.00. The GC/MS analytical data of these oils show the occurrence of abundant hopanes, and low concentrations of steranes and tricyclic terpanes with hopanes/steranes ratios from 6.25 to 12.24 and tricyclic terpanes/hopanes ratios from 0.03 to 0.24. These oils contain low drimane relative to homodrimane (C15/C16 < 1.0) and abundant rearranged bicyclanes in bicyclic sesquiterpanes. They are dominated by low carbon number (C19-C21) compounds in the tricyclic terpanes, and are rich in rearranged hopanes, C29Ts and an unknown C30 compound in pentacyclic triterpanes. These geochemical characteristics suggest that the oils were generated mainly from terrigenous organic matter. The other oil family shows remarkably different biomarker compositions and distributions. The oils revealed Pr/Ph ratios of about 1.0, high drimane/homodrimane ratios (>1.0), low hopanes/steranes ratios (0.65–2.50), high tricyclic terpanes/hopanes ratios (0.30–2.00) and a dominant peak at C23 in tricyclic tepanes, suggesting a marine organic origin. Oil-source rock correlation indicates that these two oil families seem to have been derived from Mesozoic Jurassic-Triassic terrestrial source rocks (shales and coal seams) and Lower Paleozoic Ordovician-Cambrian marine source rocks, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号