首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using high-resolution, low-scan-rate, all-sky CCD cameras and high-level CCD video cameras, the SPanish Meteor and fireball Network (SPMN) recorded the 2007 κ Cygnid fireball outburst from several observing stations. Here, accurate trajectory, radiant and orbital data obtained for the κ Cygnid meteor are presented. The typical astrometric uncertainty is 1–2 arcmin, while velocity determination errors are of the order of 0.3–0.6 km s−1, though this depends on the distance of each event to the station and its particular viewing geometry. The observed orbital differences among 1993 and 2007 outbursts support the hypothesis that the formation of this meteoroid stream is a consequence of the fragmentation of a comet nucleus. Such disruptive process proceed as a cascade, where the break up of the progenitor body leads to produce small remnants, some fully disintegrate into different clumps of particles and other remaining as dormant objects such as 2008ED69, 2001MG1 and 2004LA12 which are now observed as near-Earth asteroids. In addition to the orbital data, we present a unique spectrum of a bright  κ  Cygnid fireball revealing that the main rocky components have chondritic abundances, and estimations of the tensile strength of those fireballs that exhibited a catastrophic disruption behaviour. All this evidence of the structure and composition of the κ Cygnid meteoroids is consistent with being composed by fine-grained materials typically released from comets.  相似文献   

2.
An Öpik-based geometric algorithm is used to compute impact probabilities and velocity distributions for various near-Earth object (NEO) populations. The resulting crater size distributions for the Earth and Moon are calculated by combining these distributions with assumed NEO size distributions and a selection of crater scaling laws. This crater probability distribution indicates that the largest craters on both the Earth and the Moon are dominated by comets. However, from a calculation of the fractional probabilities of iridium deposition, and the velocity distributions at impact of each NEO population, the only realistic possibilities for the Chicxulub impactor are a short-period comet (possibly inactive) or a near-Earth asteroid. For these classes of object, sufficiently large impacts have mean intervals of 100 and 300 Myr respectively, slightly favouring the cometary hypothesis.  相似文献   

3.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

4.
5.
The possibility of impacts between comets belonging to the Jupiter Family and other small bodies orbiting in the main asteroid belt, and the consequences in relation to cometary activity are discussed. The probability of such events and the jumps in cometary brightness caused by impacts are examined. The results are compared with the results of the Deep Impact mission to Comet 9P/Tempel 1. The main conclusion of this paper is in agreement with previous findings, namely that an impact mechanism cannot be the main cause of the outburst activity of comets.  相似文献   

6.
It is demonstrated how globally distributed outgassing activity on a triaxial comet nucleus bridges the gap between the intuitive Sekanina model, used for comet orbit solutions, and the physics of the problem. In this activity and shape limit, it is shown how a recoil force component, which originates from a day-side restricted sublimation process, is necessary to describe the comet's rotational evolution. Modifications of the non-gravitational force cosines are suggested, with a fundamentally different interpretation than before. Applications to asteroid rotation yield that the ability of specular reflection, of solar photons on an asteroid's surface, to change the asteroid's rotation period and equatorial obliquity, is not dependent on the overall shape of the asteroid.  相似文献   

7.
We present results from long-term numerical integrations of hypothetical Jupiter-family comets (JFCs) over time-scales in excess of the estimated cometary active lifetime. During inactive periods these bodies could be considered as 'cometary' near-Earth objects (NEOs) or 'cometary asteroids'. The contribution of cometary asteroids to the NEO population has important implications not only for understanding the origin of inner Solar system bodies but also for a correct assessment of the impact hazard presented to the Earth by small bodies throughout the Solar system. We investigate the transfer probabilities on to 'decoupled' subJovian orbits by both gravitational and non-gravitational mechanisms, and estimate the overall inactive cometary contribution to the NEO population. Considering gravitational mechanisms alone, more than 90 per cent of decoupled NEOs are likely to have their origin in the main asteroid belt. When non-gravitational forces are included, in a simple model, the rate of production of decoupled NEOs from JFC orbits becomes comparable to the estimated injection rate of fragments from the main belt. The Jupiter-family (non-decoupled) cometary asteroid population is estimated to be of the order of a few hundred to a few thousand bodies, depending on the assumed cometary active lifetime and the adopted source region.  相似文献   

8.
9.
10.
This study is motivated by the possibility of determining the large-body meteoroid flux at the orbit of Venus. Towards this end, we attempt to estimate the times at which enhanced meteoric activity might be observed in the planet's atmosphere. While a number of meteoroid streams are identified as satisfying common Earth and Venus intercept conditions, it is not clear from the Earth-observed data if these streams contain large-body meteoroids. A subset of the Taurid Complex objects may produce fireball-rich meteor showers on Venus. A total of 11 short-period, periodic comets and 46 near-Earth asteroids approach the orbit of Venus to within 0.1 au, and these objects may have associated meteoroid streams. Comets 27P/Crommelin and 7P/Pons–Winnecke are identified as candidate parents to possible periodic meteor showers at the orbit of Venus.  相似文献   

11.
We investigate the orbital evolution of both real and hypothetical Edgeworth–Kuiper Objects in order to determine whether any conclusions can be drawn regarding the existence, or otherwise, of the tenth planet postulated by Murray. We find no qualitative difference in the orbital evolution, and so conclude that the hypothetical planet has been placed on an orbit at such a large heliocentric distance that no evidence for the existence, or non-existence, can be found from a study of the known Edgeworth–Kuiper Objects.  相似文献   

12.
In a previous paper, we have found that the resonance structure of the present Jupiter Trojan swarms could be split up into four different families of resonances. Here, in a first step, we generalize these families in order to describe the resonances occurring in Trojan swarms embedded in a generic planetary system. The location of these families changes under a modification of the fundamental frequencies of the planets and we show how the resonant structure would evolve during a planetary migration. We present a general method, based on the knowledge of the fundamental frequencies of the planets and on those that can be reached by the Trojans, which makes it possible to predict and localize the main events arising in the swarms during migration. In particular, we show how the size and stability of the Trojan swarms are affected by the modification of the frequencies of the planets. Finally, we use this method to study the global dynamics of the Jovian Trojan swarms when Saturn migrates outwards. Besides the two resonances found by Morbidelli et al. which could have led to the capture of the current population just after the crossing of the 2:1 orbital resonance, we also point out several sequences of chaotic events that can influence the Trojan population.  相似文献   

13.
The orbit of 1991 VG and a set of other asteroids whose orbits are very similar to that of the Earth have been examined. Its origin has been speculated to be a returning spacecraft, lunar ejecta or a low-inclination Amor- or Apollo-class object. The latter is arguably the more likely source, which has been investigated here. The impact probability for these objects has been calculated, and while it is larger than that of a typical near-Earth asteroid (NEA), it is still less than 1:200 000 over the next 5000 yr. In addition, the probability of an NEA ever ending up on an Earth-like orbit has been obtained from numerical simulations and turned out to be about 1:20 000, making this a rare class of objects. The typical time spent in this state is about 10 000 yr, much less than the typical NEA lifetime of 10 Myr.  相似文献   

14.
Planetary impact craters have a high degree of radial symmetry. This hampers efforts to identify the azimuthal impact direction for most craters – the radially symmetric component of an impact crater swamps any asymmetries that may be present. We demonstrate how the asymmetric component can be isolated and the direction of the asymmetries quantified using a two-dimensional eigenfunction expansion over a circular domain. The complex coefficients of expansion describe the magnitude and phase (angular alignment) of each term. From the analysis of hypervelocity impact craters formed in the laboratory, with impact angles ranging from 0° to 50° from the surface normal, we show that asymmetries which reveal the impact direction are still present at just 10° from the surface normal, and that the phase of one complex coefficient of expansion, c 11, indicates the impact direction. Analysis of the lunar crater Hadley shows bilateral symmetry in the radially asymmetric component, which may be due to oblique impact. The 31-km lunar ray crater Kepler has morphological features that indicate the azimuthal impact direction. Coefficient c 11 gives an azimuthal impact direction similar to that expected from the morphology, although post-impact gravitational collapse and slumping obscure the result to some degree. Ray craters may provide a means of testing the method for smaller 'simple' craters when data are available.  相似文献   

15.
We study the global dynamics of the jovian Trojan asteroids by means of the frequency map analysis. We find and classify the main resonant structures that serve as skeleton of the phase space near the Lagrangian points. These resonances organize and control the long-term dynamics of the Trojans. Besides the secondary and secular resonances, that have already been found in other asteroid sets in mean motion resonance (e.g. main belt, Kuiper belt), we identify a new type of resonance that involves secular frequencies and the frequency of the great inequality, but not the libration frequency. Moreover, this new family of resonances plays an important role in the slow transport mechanism that drives Trojans from the inner stable region to eventual ejections. Finally, we relate this global view of the dynamics with the observed Trojans, identify the asteroids that are close to these resonances and study their long-term behaviour.  相似文献   

16.
This article describes a citizen‐science project conducted by the Spanish Virtual Observatory (SVO) to improve the orbits of near‐Earth asteroids (NEAs) using data from astronomical archives. The list of NEAs maintained at the Minor Planet Center (MPC) is checked daily to identify new objects or changes in the orbital parameters of already catalogued objects. Using NEODyS we compute the position and magnitude of these objects at the observing epochs of the 938 046 images comprising the Eigth Data Release of the Sloan Digitised Sky Survey (SDSS). If the object lies within the image bound‐aries and the magnitude is brighter than the limiting magnitude, then the associated image is visually inspected by the project's collaborators (the citizens) to confirm or discard the presence of the NEA. If confirmed, accurate coordinates and, sometimes, magnitudes are submitted to the MPC. Using this methodology, 3226 registered users have made during the first fifteen months of the project more than 167 000 measurements which have improved the orbital elements of 551 NEAs (6% of the total number of this type of asteroids). Even more remarkable is the fact that these results have been obtained at zero cost to telescope time as NEAs were serendipitously observed while the survey was being carried out. This demonstrates the enormous scientific potential hidden in astronomical archives. The great reception of the project as well as the results obtained makes it a valuable and reliable tool for improving the orbital parameters of near‐Earth asteroids. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
18.
We investigate the dynamical evolution of 210 hypothetical massless bodies initially situated between 10 and 30 au from the Sun in order to determine the general characteristics of the evolved system. This is of particular relevance to the understanding of the origin of Edgeworth–Kuiper belt objects on scattered intermediate orbits, such as 1996 TL 66, which have high eccentricity and semimajor axis but nevertheless have perihelion in the region between 30 and 50 au from the Sun.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号