共查询到20条相似文献,搜索用时 15 毫秒
1.
We study a mean field model of the solar dynamo, in which the non-linearity is the action of the azimuthal component of the Lorentz force of the dynamo-generated magnetic field on the angular velocity. The underlying zero-order angular velocity is consistent with recent determinations of the solar rotation law, and the form of the alpha effect is chosen so as to give a plausible butterfly diagram. For small Prandtl numbers we find regular, intermittent and apparently chaotic behaviour, depending on the size of the alpha coefficient. For certain parameters, the intermittency displays some of the characteristics believed to be associated with the Maunder minimum. We thus believe that we are capturing some features of the solar dynamo. 相似文献
2.
A model for the solar dynamo, consistent in global flow and numerical method employed with the differential rotation model, is developed. The magnetic turbulent diffusivity is expressed in terms of the entropy gradient, which is controlled by the model equations. The magnetic Prandtl number and latitudinal profile of the alpha-effect are specified by fitting the computed period of the activity cycle and the equatorial symmetry of magnetic fields to observations. Then, the instants of polar field reversals and time-latitude diagrams of the fields also come into agreement with observations. The poloidal field has a maximum amplitude of about 10 Gs in the polar regions. The toroidal field of several thousand Gauss concentrates near the base of the convection zone and is transported towards the equator by the meridional flow. The model predicts a value of about 1037 erg for the total magnetic energy of large-scale fields in the solar convection zone. 相似文献
3.
More and more observations are showing a relatively weak, but persistent, non-axisymmetric magnetic field co-existing with the dominant axisymmetric field on the Sun. Its existence indicates that the non-axisymmetric magnetic field plays an important role in the origin of solar activity. A linear non-axisymmetric α2 – Ω dynamo model is derived to explore the characteristics of the axisymmetric ( m = 0) and the first non-axisymmetric ( m = 1) modes and to provide a theoretical basis with which to explain the 'active longitude', 'flip-flop' and other non-axisymmetric phenomena. The model consists of an updated solar internal differential rotation, a turbulent diffusivity varying with depth, and an α-effect working at the tachocline in a rotating spherical system. The difference between the α2 –Ω and the α–Ω models and the conditions that favour the non-axisymmetric modes under solar-like parameters are also presented. 相似文献
4.
5.
It is proposed that the solar flare phenomenon can be understood as a manifestation of the electrodynamic coupling process of the photosphere-chromosphere-corona system as a whole. The system is coupled by electric currents, flowing along (both upward and downward) and across the magnetic field lines, powered by the dynamo process driven by the neutral wind in the photosphere and the lower chromosphere. A self-consistent formulation of the proposed coupling system is given. It is shown in particular that the coupling system can generate and dissipate the power of 1029 erg s#X2212;1 and the total energy of 1032 erg during a typical life time (103 s) of solar flares. The energy consumptions include Joule heat production, acceleration of current-carrying particles along field lines, magnetic energy storage and kinetic energy of plasma convection. The particle acceleration arises from the development of field-aligned potential drops of 10–150 kV due to the loss-cone constriction effect along the upward field-aligned currents, causing optical, X-ray and radio emissions. The total number of precipitating electrons during a flare is shown to be of order 1037–1038. 相似文献
6.
A nonlinear RLC solar cycle model 总被引:3,自引:0,他引:3
A simplified, monoparametric model, based on the Van der Pol nonlinear RLC electric oscillator, is found capable of describing the shape and related morphological properties (such as the Waldmeier effect) of the sunspot cycles. The model can also exhibit long periods of sunspot inactivity of the Maunder Minimum type. According to the model, the significant rise-to-fall time asymmetry of the most recent cycles suggests that it is unlikely that another cycle suppression will occur in the forthcoming decades. The complete sunspot record and the system's attractor are successfully emulated, given the sunspot number at cycle maxima. 相似文献
7.
The solar dynamo continues to pose a challenge to observers and theoreticians. Observations of the solar surface reveal a magnetic field with a complex, hierarchical structure consisting of widely different scales. Systematic features such as the solar cycle, the butterfly diagram, and Hale's polarity laws point to the existence of a deep-rooted large-scale magnetic field. At the other end of the scale are magnetic elements and small-scale mixed-polarity magnetic fields. In order to explain these phenomena, dynamo theory provides all the necessary ingredients including the
effect, magnetic field amplification by differential rotation, magnetic pumping, turbulent diffusion, magnetic buoyancy, flux storage, stochastic variations and nonlinear dynamics. Due to advances in helioseismology, observations of stellar magnetic fields and computer capabilities, significant progress has been made in our understanding of these and other aspects such as the role of the tachocline, convective plumes and magnetic helicity conservation. However, remaining uncertainties about the nature of the deep-seated toroidal magnetic field and the
effect, and the forbidding range of length scales of the magnetic field and the flow have thus far prevented the formulation of a coherent model for the solar dynamo. A preliminary evaluation of the various dynamo models that have been proposed seems to favor a buoyancy-driven or distributed scenario. The viewpoint proposed here is that progress in understanding the solar dynamo and explaining the observations can be achieved only through a combination of approaches including local numerical experiments and global mean-field modeling.Received: 5 May 2003, Published online: 15 July 2003 相似文献
8.
A. A. Ruzmaikin 《Solar physics》1985,100(1-2):125-140
The basic features of the solar activity mechanism are explained in terms of the dynamo theory of mean magnetic fields. The field generation sources are the differential rotation and the mean helicity of turbulent motions in the convective zone. A nonlinear effect of the magnetic field upon the mean helicity results in stabilizing the amplitude of the 22-year oscillations and forming a basic limiting cycle. When two magnetic modes (with dipole and quadrupole symmetry) are excited nonlinear beats appear, which may be related to the secular cycle modulation.The torsional waves observed may be explained as a result of the magnetic field effect upon rotation. The magnetic field evokes also meriodional flows.Adctual variations of the solar activity are nonperiodic since there are recurrent random periods of low activity of the Maunder minimum type. A regime of such a magnetic hydrodynamic chaos may be revealed even in rather simple nonlinear solar dynamo models.The solar dynamo gives rise also to three-dimensional, non-axisymmetric magnetic fields which may be related to a sector structure of the solar field. 相似文献
9.
Piyali Chatterjee 《Journal of Astrophysics and Astronomy》2006,27(2-3):87-91
We calculate helicities of solar active regions based on the idea that poloidal flux lines get wrapped around a toroidal flux
tube rising through the convection zone, thereby giving rise to the helicity. We use our solar dynamo model based on the Babcock-Leighton
α-effect to study how helicity varies with latitude and time. 相似文献
10.
. Nordlund S. B. F. Dorch R. F. Stein 《Journal of Astrophysics and Astronomy》2000,21(3-4):307-313
We review current understanding of the interaction of magnetic fields with convective motions in stellar convection zones.
Among the most exciting recent results is the discovery that magnetic fields need not primarily be confined to the stable
layer below the convection zone; numerical simulations have shown that surprisingly, strong magnetic fields can be maintained
in the interior of the convection zone. 相似文献
11.
I. K. Csada 《Solar physics》1981,74(1):103-105
The external field of the solar magnetohydrodynamic dynamo is expressed in terms of spherical harmonics and in powers of 1/r. The non-symmetric dynamo is stabilized by a -dependent rotational oscillation which interacts with the magnetic field, thus compensating for Ohmic loss. As a consequence, the axis of a dipole wave is found to move on a great circle, with revolution time equal to the magnetic cycle.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands. 相似文献
12.
Flux-dominated solar dynamo models have demonstrated to reproduce the main features of the large scale solar magnetic cycle, however the use of a solar like differential rotation profile implies in the the formation of strong toroidal magnetic fields at high latitudes where they are not observed. In this work, we invoke the hypothesis of a thin-width tachocline in order to confine the high-latitude toroidal magnetic fields to a small area below the overshoot layer, thus avoiding its influence on a Babcock-Leighton type dynamo process. Our results favor a dynamo operating inside the convection zone with a tachocline that essentially works as a storage region when it coincides with the overshoot layer. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
13.
M. Yu. Reshetnyak 《Solar System Research》2014,48(3):182-193
Using the Lagrangian approach, the author considered the temporal evolution of an ensemble of interacting magnetohydrodynamic cyclones, obeying equations of the Langevin type, in a rotating medium. The problem is topical for fast-rotating convective objects: cores of planets and a number of stars, where the Rossby numbers are much less than unity and the geostrophic balance of forces is observed. In this work, results of simulation are given both for the two-dimensional case, when axes of cyclones can rotate only in the vertical plane, and for the three-dimensional case when the axes are rotating by two angles. It is shown that a change in the heat flux on the shell boundary impacts the frequency of reversals of the mean dipole magnetic field, which agrees with results of simulation in three-dimensional models of a planetary dynamo. Applications of the model for the giant planets are considered, and an explanation of certain episodes of the geomagnetic field in the past is offered. 相似文献
14.
Zonal flows and grand minima in a solar dynamo model 总被引:1,自引:0,他引:1
P. J. Bushby 《Monthly notices of the Royal Astronomical Society》2006,371(2):772-780
15.
P.J. Kpyl 《Astronomische Nachrichten》2011,332(1):43-50
Global dynamo simulations solving the equations of magnetohydrodynamics (MHD) have been a tool of astrophysicists who try to understand the magnetism of the Sun for several decades now. During recent years many fundamental issues in dynamo theory have been studied in detail by means of local numerical simulations that simplify the problem and allow the study of physical effects in isolation. Global simulations, however, continue to suffer from the age‐old problem of too low spatial resolution, leading to much lower Reynolds numbers and scale separation than in the Sun. Reproducing the internal rotation of the Sun, which plays a crucial role in the dynamo process, has also turned out to be a very difficult problem. In the present paper the current status of global dynamo simulations of the Sun is reviewed. Emphasis is put on efforts to understand how the large‐scale magnetic fields, i.e. whose length scale is greater than the scale of turbulence, are generated in the Sun. Some lessons from mean‐field theory and local simulations are reviewed and their possible implications to the global models are discussed. Possible remedies to some current issues of solar simulations are put forward (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
16.
P. R. Wilson 《Solar physics》1988,117(2):217-226
The most sophisticated attempts to model the convection zone have yielded results in which the angular velocity increases outwards and the largest scales of convection take the form of banana cells aligned with the rotation axis. However, not only does the sign of the angular velocity gradient present problems for dynamo theory, but attempts to detect banana type cells have so far been unsuccessful. Although by no means conclusive, current tracer, spectropic, and radiative data all tend to support models of azimuthal rolls encircling the axis as the fundamental mode.It is shown here that convective upflows and downflows are preferentially generated along the rotation axis and thus initially the large-scale eddies may take the form of azimuthal rolls surrounding the poles. It is then shown that such a system may generate a progressive dynamo wave propagating from pole to equator. Since Parker has shown that an azimuthal magnetic toroid can generate a thermal shadow above it which suppresses its buoyancy, the corresponding temperature deficit so formed becomes the natural site for the downflow of the azimuthal rolls. Thus as the dynamo propagates towards the equator, so will the convective rolls. Finally the compatibility of the most recent helioseismology data with the azimuthal roll model is discussed.Solar Cycle Workshop Paper. 相似文献
17.
A. M. Soward 《Astronomische Nachrichten》1978,299(1):25-33
An axisymmetric αω-dynamo model of the Galactic disc is investigated. The disc is thin and its width, 2h*, varies slowly with distance, ωT*, from the axis of symmetry. The strength of the α*, varies linearly with axialdistance, z*, while differential rotation, dΩ*/dωT*, remains constant. Otherwise α* and dΩ*/dωT* are arbitrary functions of ωT*. The results are applied to the special case of the oblate spheroid first investigated by STIX (1976) and later by WHITE (1977). In the limit of small aspect ratio the new results agree with those obtained by WHITE and confirm that the dynamo numbers computed by STIX are too small. 相似文献
18.
K. Petrovay 《Astronomische Nachrichten》2007,328(8):777-780
A simple way to couple an interface dynamo model to a fast tachocline model is presented, under the assumption that the dynamo saturation is due to a quadratic process and that the effect of finite shear layer thickness on the dynamo wave frequency is analogous to the effect of finite water depth on surface gravity waves. The model contains one free parameter which is fixed by the requirement that a solution should reproduce the helioseismically determined thickness of the tachocline. In this case it is found that, in addition to this solution, another steady solution exists, characterized by a four times thicker tachocline and 4–5 times weaker magnetic fields. It is tempting to relate the existence of this second solution to the occurrence of grand minima in solar activity. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) 相似文献
19.
S.-I. Akasofu 《Planetary and Space Science》1975,23(5):817-823
In a quiet condition, the solar wind kinetic energy is converted into electrical energy. A small part of this energy is dissipated as heat energy in the polar ionosphere. We identify at least three types of magnetospheric disturbances which are not associated with an increase of the heat production and call them reversible disturbances, while the magnetospheric substorm is an irreversible disturbance which is associated with a large increase of the heat production.The magnetosphere appears to have an inherent internal instability by which a large amount of heat energy is sporadically produced in the polar upper atmosphere at the expense of the magnetic energy in the magnetotail. A positive feed-back process may be responsible for the growth of the instability and for the expansive phase, while the recovery phase sets in when some process begins to suppress the positive feed-back process. 相似文献
20.
L. L. Kitchatinov 《Astronomy Letters》2002,28(9):626-631
We propose a solution to one of the oldest problems in the solar-dynamo theory: explaining the equatorward drift of magnetic activity in the solar cycle. The well-known suggestion that the dynamo waves propagate along the surfaces of constant angular velocity is shown to be restricted to an isotropic medium. Allowance for the rotation-induced anisotropy in turbulent diffusion leads to an equatorward deviation of the wave phase velocity from the isorotational surface. Estimates for the dynamo waves are illustrated with two-dimensional numerical models in a spherical geometry. The model with anisotropic diffusion also shows an equatorward drift of the toroidal magnetic field when the rotation is radially uniform. 相似文献