首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
The Met Office Hadley Centre Unified Model (HadAM3) with the tiled version of the Met Office Surface Exchange Scheme (MOSES2) land surface scheme is used to assess the impact of a comprehensive imposed vegetation annual cycle on global climate and hydrology. Two 25-year numerical experiments are completed: the first with structural vegetation characteristics (Leaf Area Index, LAI, canopy height, canopy water capacity, canopy heat capacity, albedo) held at annual mean values, the second with realistic seasonally varying vegetation characteristics. It is found that the seasonalities of latent heat flux and surface temperature are widely affected. The difference in latent heat flux between experiments is proportional to the difference in LAI. Summer growing season surface temperatures are between 1 and 4 K lower in the phenology experiment over a majority of grid points with a significant vegetation annual cycle. During winter, midlatitude surface temperatures are also cooler due to brighter surface albedo over low LAI surfaces whereas during the dry season in the tropics, characterized by dormant vegetation, surface temperatures are slightly warmer due to reduced transpiration. Precipitation is not as systematically affected as surface temperature by a vegetation annual cycle, but enhanced growing season precipitation rates are seen in regions where the latent heat flux (evaporation) difference is large. Differences between experiments in evapotranspiration, soil moisture storage, the timing of soil thaw, and canopy interception generate regional perturbations to surface and sub-surface runoff annual cycles in the model.  相似文献   

2.
利用归一化植被指数(Normalized Difference Vegetation Index,NDVI)将中国划分为不同的生态区,在此基础上分析夏季植被状况与不同生态区增暖之间的联系。研究表明,就多年平均而言,中国植被覆盖呈现自东向西逐渐减少的空间分布。1982年以来,植被稀疏的干旱生态区是夏季增暖最明显的区域,平均气温和平均最高气温增速大都位于0.6~1.0℃/10 a,而平均最低气温的升高达到0.8~1.4℃/10 a,明显高于中国其他区域。进一步分析发现,夏季气温的变化与其所处地区的植被疏密程度之间存在很好的负相关关系,即快速增暖主要发生在植被稀疏区,且这种负相关关系在夏季平均最低气温上最为显著。不同植被覆盖区中气温的长期变化趋势,受NDVI变化带来的地表反照率和云量变化的影响,但各生态区不尽相同,主要表现在:植被稀疏的干旱生态区,植被减少,引起地表反照率增加,感热输送增加而潜热输送减小,加速了该地区整体的增温速率;而在植被茂密地区,植被增加造成地表反照率减少,同时由于蒸发冷却,其整体增暖幅度缓于植被稀疏区。所以,植被活动对全球变暖背景下的区域气候变化具有重要作用,尤其表现在干旱生态区的陆面过程上,地表辐射平衡和能量收支的显著改变放大了干旱生态区的增暖速率。  相似文献   

3.
The aim of this study was to develop an advanced parameterization of the snow-free land surface albedo for climate modelling describing the temporal variation of surface albedo as a function of vegetation phenology on a monthly time scale. To estimate the effect of vegetation phenology on snow-free land surface albedo, remotely sensed data products from the Moderate-Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra platform measured during 2001 to 2004 are used. The snow-free surface albedo variability is determined by the optical contrast between the vegetation canopy and the underlying soil surface. The MODIS products of the white-sky albedo for total shortwave broad bands and the fraction of absorbed photosynthetically active radiation (FPAR) are analysed to separate the vegetation canopy albedo from the underlying soil albedo. Global maps of pure soil albedo and pure vegetation albedo are derived on a 0.5° regular latitude/longitude grid, re-sampling the high-resolution information from remote sensing-measured pixel level to the model grid scale and filling up gaps from the satellite data. These global maps show that in the northern and mid-latitudes soils are mostly darker than vegetation, whereas in the lower latitudes, especially in semi-deserts, soil albedo is mostly higher than vegetation albedo. The separated soil and vegetation albedo can be applied to compute the annual surface albedo cycle from monthly varying leaf area index. This parameterization is especially designed for the land surface scheme of the regional climate model REMO and the global climate model ECHAM5, but can easily be integrated into the land surface schemes of other regional and global climate models.  相似文献   

4.
基于2001~2018年中分辨率成像光谱仪(MODIS)探测的白天地面温度(简称MODIS 白天地温)资料,与青藏高原(简称高原)122个气象站点观测的最高气温资料,在年尺度上评估了MODIS 白天地温在高原的适用性,研究了高原五个干湿分区下MODIS 白天地温的海拔依赖型变暖特征,得到以下主要结论:(1)MODIS白天地温能够基本再现观测的最高气温的时空以及海拔依赖型变暖特征;(2)高原整体上,MODIS白天地温存在显著的海拔依赖型变暖特征,平均海拔每增加100 m,其趋势增加0.02°C (10a)?1,且受积雪—反照率反馈主导;(3)干湿分区下,海拔依赖型变暖特征在高原表现为偏湿润地区强于偏干旱地区;季风区强于西风区。海拔依赖型特征强弱:半湿润地区>湿润半湿润地区>半干旱地区>湿润地区>干旱地区。平均海拔每增加100 m,以上区域的地温趋势分别增加0.06,0.03,0.03,0.01,0.01°C (10a)?1。半湿润和湿润半湿润地区年均温在0°C左右,在气候变暖背景下积雪—反照率反馈作用最为强烈,是其海拔依赖型变暖的主导因素;干旱与半干旱地区年均温相对更低,气候变暖程度对积雪影响相对较小,积雪—反照率反馈作用被限制,但仍对上述地区的海拔依赖型变暖起主导作用;而湿润地区的积雪覆盖率的上升可能是由于降雪(固态降水)增加抵消了积雪融化损耗,云辐射、水汽等其他因素主导了其海拔依赖型变暖。  相似文献   

5.
A seasonal energy balance climate model containing a detailed treatment of surface and planetary albedo, and in which seasonally varying land snow and sea ice amounts are simulated in terms of a number of explicit physical processes, is used to investigate the role of high latitude ice, snow, and vegetation feedback processes. Feedback processes are quantified by computing changes in radiative forcing and feedback factors associated with individual processes. Global sea ice albedo feedback is 5–8 times stronger than global land snowcover albedo feedback for a 2% solar constant increase or decrease, with Southern Hemisphere cryosphere feedback being 2–5 times stronger than Northern Hemisphere cryosphere feedback.In the absence of changes in ice extent, changes in ice thickness in response to an increase in solar constant are associated with an increase in summer surface melting which is exactly balanced by increased basal winter freezing, and a reduction in the upward ocean-air flux in summer which is exactly balanced by an increased flux in winter, with no change in the annual mean ocean-air flux. Changes in the mean annual ocean-air heat flux require changes in mean annual ice extent, and are constrained to equal the change in meridional oceanic heat flux convergence in equilibrium. Feedback between ice extent and the meridional oceanic heat flux obtained by scaling the oceanic heat diffusion coefficient by the ice-free fraction regulates the feedback between ice extent and mean annual air-sea heat fluxes in polar regions, and has a modest effect on model-simulated high latitude temperature change.Accounting for the partial masking effect of vegetation on snow-covered land reduces the Northern Hemisphere mean temperature response to a 2% solar constant decrease or increase by 20% and 10%, respectively, even though the radiative forcing change caused by land snowcover changes is about 3 times larger in the absence of vegetational masking. Two parameterizations of the tundra fraction are tested: one based on mean annual land air temperature, and the other based on July land air temperature. The enhancement of the mean Northern Hemisphere temperature response to solar constant changes when the forest-tundra ecotone is allowed to shift with climate is only 1/3 to 1/2 that obtained by Otterman et al. (1984) when the mean annual parameterization is used here, and only 1/4 to 1/3 as large using the July parameterization.The parameterized temperature dependence of ice and snow albedo is found to enhance the global mean temperature response to a 2% solar constant increase by only 0.04 °C, in sharp contrast to the results of Washington and Meehl (1986) obtained with a mean annual model. However, there are significant differences in the method used here and in Washington and Meehl to estimate the importance of this feedback process. When their approach is used in a mean annual version of the present model, closer agreement to their results is obtained.  相似文献   

6.
土地利用变化对我国区域气候影响的数值试验   总被引:29,自引:0,他引:29  
使用RegCM2区域气候模式单向嵌套澳大利亚CSIRO R21L9全球海-气耦合模式,通过将中国区域植被覆盖由理想状况改变为实际状况的数值试验对比分析,探讨了当代中国土地利用变化对中国区域气候的影响,并对结果进行了统计显著性检验。研究表明,土地利用的变化,会导致我国西北等地区年平均降水减少,导致年平均气温在内陆部分地区升高和在沿海个别地区降低,引起许多地方夏季日平均最高气温升高,而冬季日平均最低气温则在我国东部部分地区降低的同时在西北地区升高,土壤湿度的变化表现为大范围的降低。研究同时表明,相同的土地变化在不同的地理环境下引起的气候要素变化有一定的不一致性。  相似文献   

7.
The effects of terrestrial ecosystems on the climate system have received most attention in the tropics, where extensive deforestation and burning has altered atmospheric chemistry and land surface climatology. In this paper we examine the biophysical and biogeochemical effects of boreal forest and tundra ecosystems on atmospheric processes. Boreal forests and tundra have an important role in the global budgets of atmospheric CO2 and CH4. However, these biogeochemical interactions are climatically important only at long temporal scales, when terrestrial vegetation undergoes large geographic redistribution in response to climate change. In contrast, by masking the high albedo of snow and through the partitioning of net radiation into sensible and latent heat, boreal forests have a significant impact on the seasonal and annual climatology of much of the Northern Hemisphere. Experiments with the LSX land surface model and the GENESIS climate model show that the boreal forest decreases land surface albedo in the winter, warms surface air temperatures at all times of the year, and increases latent heat flux and atmospheric moisture at all times of the year compared to simulations in which the boreal forest is replaced with bare ground or tundra. These effects are greatest in arctic and sub-arctic regions, but extend to the tropics. This paper shows that land-atmosphere interactions are especially important in arctic and sub-arctic regions, resulting in a coupled system in which the geographic distribution of vegetation affects climate and vice versa. This coupling is most important over long time periods, when changes in the abundance and distribution of boreal forest and tundra ecosystems in response to climatic change influence climate through their carbon storage, albedo, and hydrologic feedbacks.  相似文献   

8.
利用国际古气候模拟对比计划第四阶段的多模式结果,分析了末次间冰期亚洲中部干旱区的干湿变化及机制。多模式集合平均结果表明,末次间冰期亚洲中部干旱区年降水减少0.7%,其中中亚地区的年降水减少2.8%,新疆地区年降水增加1.8%。水汽收支方程表明,末次间冰期中亚地区在雨季(冬春季)的降水变化主要与垂直动力项有关,新疆地区在雨季(夏季)的降水变化主要与垂直动力与热力项有关。此外,基于Penman-Montieth方法计算的亚洲中部干旱区的干旱指数在末次间冰期减小约10.2%,表明末次间冰期亚洲中部干旱区气候明显变干且存在旱区扩张的现象,这主要受到潜在蒸散变化的调控。潜在蒸散的增加进一步受到有效能量增加与地面风速增大的调控。本研究从模拟的角度揭示了末次间冰期亚洲中部干旱区干湿变化的可能特征及机制,在一定程度上有助于理解旱区气候在增暖情景下对轨道参数的响应特征。  相似文献   

9.
The influence of prescribed changes in vegetation on the climate of the North American monsoon region is examined using the National Center for Atmospheric Research Community Climate System Model Version 3.5 (NCAR CCSM3.5). Initial value ensemble experiments are performed in which the vegetation cover fraction over the North American monsoon region is reduced by 0.2 and the intra-annual climatic response is assessed probabilistically in each one-year ensemble experiment. Changes in the surface radiation budget include decreases in sensible and latent heat fluxes and increases in upward longwave and downward shortwave radiation fluxes, with small net changes in surface albedo. The climatic responses to reduced vegetation cover fraction include year-round increases in ground and surface air temperature, a dampened hydrologic cycle with decreased springtime evaporation, springtime and autumnal precipitation, and autumnal cloud cover, and enhanced atmospheric subsidence in late autumn. Decreased vegetation shifts the monsoon season over the Southwest United States earlier in the year. Within the North American monsoon region, the most robust vegetation feedbacks to climate are found over woody landscapes.  相似文献   

10.
This article studies the response of the distribution pattern and the physiological characteristics of the ecosystem to the spontaneous precipitation and the interaction between vegetation and the atmosphere on multiple scales in arid and semi-arid zones, based on measured data of the ecological physiological parameters in the Ordas Plateau of northern China. The results show that the vegetation biomass and the energy use efficiency of photosynthesis are especially sensitive to the annual precipitation; strong and complex interactions exist between the vegetation and the atmosphere on multiple scales leading to supernormal thermal heterogeneity of the underlying surface, the strong vortex movement and turbulence. This study can facilitate understanding of the land surface processes and the influences of global climate change as well as human activities on the human environment in the arid and semi-arid zones. It also aids in improving the parameterization schemes of turbulent fluxes of a heterogeneous underlying surface for land surface processes in climate models.  相似文献   

11.
To build land surface dataset for climate model,with application of remote sensing technique as well as the Geographic Information System(GIS),the data of surface type,roughness and albedo over China in 1997 were retrieved,resolutions being 10 km×10 km.Based on these data,an analysis is conducted on the geographic distributions and seasonal variations of surface vegetation cover and roughness as well as albedo over China.Results show that surface vegetation cover is mainly located to the south of Yangtze River,in Southwest and Northeast China andsparse vegetation cover is in the Northwest.The variation of land surface cover affects the variations of land surface roughness and albedo.High albedo occurred in the north of Xinjiang Autonomous Region,the north of Northeast China and the Qinghai-Xizang Plateau in winter,in correspondence with the location of snow cover.For most part of China,surface roughness decreases and albedo increases in winter,while the roughness increases and the albedo decreases in summer,which could mainly result from land surface cover(snow cover and vegetation cover)and soil moisture changes.This shows that the geographic distribution and seasonal variation of the albedo are almost opposite to those of the roughness,in agreement with theoretical results.Temporally,the amplitude of surface roughness change is quite small in comparison with the roughness itself.  相似文献   

12.
A global atmospheric general circulation model and an asynchronously coupled global atmosphere-biome model are used to simulate vegetation feedback at the mid-Pliocene approximately 3.3 to 3.0 million years ago.For that period,the simulated vegetation differed from present conditions at 62%of the global ice-free land surface.Vegetation feedback had little overall impact on the global climate of the mid-Pliocene.At the regional scale,however,the interactive vegetation led to statistically significant increases in annual temperature over Greenland,the high latitudes of North America,the mid-high latitudes of eastern Eurasia,and western Tibet,and reductions in most of the land areas at low latitudes,owing to vegetation-induced changes in surface albedo.  相似文献   

13.
Vegetation feedback under future global warming   总被引:2,自引:0,他引:2  
It has been well documented that vegetation plays an important role in the climate system. However, vegetation is typically kept constant when climate models are used to project anthropogenic climate change under a range of emission scenarios in the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios. Here, an atmospheric general circulation model, and an asynchronously coupled system of an atmospheric and an equilibrium terrestrial biosphere model are forced by monthly sea surface temperature and sea ice extent for the periods 2051?C2060 and 2090?C2098 as projected with 17 atmosphere?Cocean general circulation models participating in the IPCC Fourth Assessment Report, and by appropriate atmospheric carbon dioxide concentrations under the A2 emission scenario. The effects of vegetation feedback under future global warming are then investigated. It is found that the simulated composition and distribution of vegetation during 2051?C2060 (2090?C2098) differ greatly from the present, and global vegetation tends to become denser as expressed by a 21% (36%) increase in global mean leaf area index, which is most pronounced at the middle and high northern latitudes. Vegetation feedback has little effect on globally averaged surface temperature. On a regional scale, however, it induces statistically significant changes in surface temperature, in particular over most parts of continental Eurasia east of about 60°E where annual surface temperature is expected to increase by 0.1?C1.0?K, with an average of about 0.4?K for each future period. These changes can mostly be explained by changes in surface albedo resulting from vegetation changes in the context of future global warming.  相似文献   

14.
干旱区天气、气候数值模拟的研究进展   总被引:5,自引:0,他引:5  
干旱区的气候模拟有着很强特殊性。气候模式是研究和探讨干旱区形成物理机制的有效手段和工具。介绍了近年来国内外干旱气候数值模拟和试验的研究与进展.总结和评述了陆面过程中地表反照率、土壤湿度、植被状况的参数化和对气候的影响.讨论和阐述陆面过程在气候模拟中的重要性。对干旱区的气候和天气灾害的数值模式模拟研究作了一些评述,并对干旱区数值模拟的有关问题进行了讨论和展望。指出干旱区陆面过程的深入研究和干旱区陆面参数的标定,是改进干旱区气候模拟的重要途径。  相似文献   

15.
Summary The albedo of vegetated land surfaces (surface albedo) is a key factor in climate modeling and in mechanistic accounting of many ecological processes. This paper proposes a testable numerical equation for the analysis and projection of surface albedo. Conceptualized as the manifestation of a canopy elements-determined basic property after modifications by temporal and spatial circumstances, surface albedo was depicted analytically in relation to 11 driving variables (leaf size, leaf life span, relative leaf age, canopy leaf cover, relative stem cover, vegetation height, stress-calendar day, drought indicator, optical air mass, station atmospheric pressure, snow cover). With peripheral algorithms developed to derive all but two of those variables, surface albedo was linked ultimately to eight rudimentary factors (calendar day, latitude, elevation, vegetation height, dominant plant species, monthly air temperature, monthly precipitation, snow cover). The analytical framework, and then its coefficient values, for surface albedo were generally supported by a series of statistical evaluations in terms of: (i) the equation’s ability to capture, by regression fitting, the variation in the surface albedo of 26 forests (135 data points) distributed around the world; (ii) the quantitative significance of individual driving variables; (iii) the randomness of residual or error distributions; (iv) the performance of the forests-fitted equation in extrapolative prediction of surface albedo against independent data for 8 deforested sites (93 data points) and for 3 types of vegetation (7 data points) at the Arctic treeline. Compared to the data, the fitted or projected albedo values had a margin of error generally within ±10%. The individual coefficient values and component functions of the final equation were consistent with their supposed mechanistic underpinnings, based on independent information from the literature. The equation shed new insight into the quantitative behavior of surface albedo, and upon further validation, should be useful for modeling surface albedo as a key land surface-atmosphere feedback link that varies and interacts with climate and vegetation. Received August 18, 1997  相似文献   

16.
Land Cover, Rainfall and Land-Surface Albedo in West Africa   总被引:5,自引:0,他引:5  
Land surface albedo is an important variable in General Circulation Models (GCMs). When land cover is modified through anthropogenic land use, changes in land-surface albedo may produce atmospheric subsidence and reduction of rainfall. In this study we examined albedo time series and their relationships with rainfall, land cover, and population in West Africa. This particular region was selected because it has become a focal point in debates over biophysical impacts of desertification and deforestation. Our analyses revealed that albedo and rainfall were related only modestly at short time scales (monthly and annual) and that mean annual albedo values remained relatively stable from 1982–1989 over a widerange of climatic and vegetation zones in West Africa. The relationship between long-term mean rainfall and mean albedo was strong and curvilinear(r2 = 0.802). The same was true for the relationship betweenpercent tree cover and mean albedo (r2 = 0.659). These results suggest that long-term climate patterns, which control vegetation type and canopy structure, have greater influence on albedo than short-term fluctuations in rainfall. Our results reinforce other recent studies based on satellite data that have questioned the extent and pervasiveness of desertification in West Africa.  相似文献   

17.
Transient experiments for the Eemian (128–113 ky BP) were performed with a complex, coupled earth system model, including atmosphere, ocean, terrestrial biosphere and marine biogeochemistry. In order to investigate the effect of land surface parameters (background albedo, vegetation and tree fraction and roughness length) on the simulated changes during the Eemian, simulations with interactive coupling between climate and vegetation were compared with additional experiments in which these feedbacks were suppressed. The experiments show that the influence of land surface on climate is mainly caused by changes in the albedo. For the northern hemisphere high latitudes, land surface albedo is changed partially due to the direct albedo effect of the conversion of grasses into forest, but the indirect effect of forests on snow albedo appears to be the major factor influencing the total absorption of solar radiation. The Western Sahara region experiences large changes in land surface albedo due to the appearance of vegetation between 128 and 120 ky BP. These local land surface albedo changes can be as much as 20%, thereby affecting the local as well as the global energy balance. On a global scale, latent heat loss over land increases more than 10% for 126 ky BP compared to present-day.  相似文献   

18.
非均匀对流边界层的地转强迫流动和动量输送   总被引:1,自引:1,他引:1       下载免费PDF全文
蔡旭晖  陈家宜 《大气科学》2003,27(3):381-388
用大涡模拟方法研究地转强迫下的对流边界层流动和地表热力非均匀性影响.模拟重现了典型对流边界层的平均风廓线和动量通量垂直分布.地表热力非均匀性对区域平均风速和动量通量分布无明显影响,但边界层内的局地流动性状和湍流动量输送情况有系统性的改变.下风较热区近地面风速增强而高空流动受到阻塞,上风较冷区之上情况则正好相反.对应于平均流动场的畸变,地表较热区之上边界层大部可以出现动量向上输送的情况,较冷区成为大气动量下传的主要通道.地面应力在较热区增强、较冷区减弱的趋势明显.  相似文献   

19.
Land use and land cover change (LUCC) can modify the physical and thermodynamic characteristics of the land surface, including surface roughness, albedo, and vegetation fraction, among others. These direct changes can result in a series of impacts on regional climate. In this paper, the simulated results over China under the scenario of LUCC using weather research and forecasting model are presented. The period for the simulation is from December 2006 to December 2011. Two experiments are initialized by the LUCC datasets derived from the MODIS data of 2001 and 2008, respectively. The results show that the LUCC in most areas of China reduces the surface albedo and increases the surface temperature. Especially in the Hetao Plain, the magnitude of increased surface temperature is above 0.5 °C in winter, and the increase in winter is more obvious than in summer. The precipitation in the Hetao Plain increases. The sensible heat in most parts of East China is reduced, while the latent heat is increased in most areas of China.  相似文献   

20.
NumericalSimulationfortheImpactofDeforestation on Climate in ChinaandItsNeighboring RegionsSongYukuan(宋玉宽);ChenLongxun(陈隆勋)an...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号