首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
本文使用经过青藏高原气象科学实验测站观测资料订正过的欧洲中心FGGE-Ⅲb资料,对1979年夏季青藏高原地区进行了涡度方程诊断分析,研究了它们的月际变化、逐日变化和日变化,与高原上积云对流活动的强弱变化进行了比较,讨论了夏季高原稳定的环流场维持的物理机制;同时还对同时期热带赤道地区强对流活动区域进行了涡度方程诊断分析,将其涡旋环流场的维持机制与夏季高原地区进行了比较. 通过分析,发现夏季青藏高原月平均涡度方程平衡关系主要是次网格尺度项和散度项的平衡,水平平流项的耗散作用在高空较强,但不如次网格尺度项强,涡度方程其余各项均很小.从月际变化、逐日变化和日变化的比较,发现当积云对流活动发生强弱变化时,ω、D和涡度方程中的散度项、次网格尺度项均伴随很强的相应变化,对应关系很好,说明涡度方程中的次网格尺度项R(余差项)的主要部分来源于积云对流系统的活动,反映了夏季高原上存在的强盛频繁的积云对流活动对高原平均环流场的形成和维持具有重要的作用. 使夏季青藏高原高低层环流场加强的物理机制足高低层气流强大的辐散辐合,耗散机制是积云对流系统对高低层涡度的上下搅拌垂直输送作用和网格尺度水平平流项的非线性耗散作用,其中前者起主要的作用. 从涡旋能量维持的角度看,夏季青藏高原高低层环流场的维持大致是高原尺度环流系统的涡旋能量通过非线性过程,分别向高原区域以外更大尺度的系统和次网格尺度的对流系统输送,输送的损失由强大的高低层辐散辐合气流产生的涡旋能量补充,从而维持了高原地区环流场的稳定.赤道附近热带强对流活动区域环流场的维持机制与夏季高原地区的不同点,主要表现在其高层和低层的区域尺度环流场通过非线性作用都从更大尺度环流场得到涡旋能量,并把涡旋能量转送给次网格尺度积云对流系统,使自身维持稳定.  相似文献   

2.
本文使用经过青藏高原气象科学实验测站观测资料订正过的欧洲中心FGGE-Ⅲb资料,对1979年7月月平均进行分析,计算了垂直速度、散度、垂直剖面函数和速度势函数等物理量以及上升气流轨迹,给出了夏季高原主体地区环流场的主要特征和详细的高原地区不同经纬度剖面垂直环流场的特征和分布. 配合夏季高原高层强大稳定的反气旋高压带,高原主体地区为整层上升气流区,但ω场有东西两个上升中心,它们是两个对流活动上升中心,两部的中心位于狮泉河和改则之间偏北的地区,东部的位于那曲一带. 本文给出了高原地区三个主要的经向环流圈(南北两侧下沉的小环流圈、跨赤道的季风环流圈)的经度位置和高原地区与西太平洋之间发生遥相关的主要纬度位置,发现在跨赤道的季风环流圈中,在赤道以南的下沉气流主要来自高原与15°N之间,从高原上升的气流仅在对流层上部(200hPa左右)跨过赤道.从高原西部上升的气流往往从非洲至印度尼西亚一带跨过赤道,而从高原东部及其东侧我国大陆上升的气流往往下沉在太平洋和北大西洋地区.  相似文献   

3.
本文使用经过青藏高原气象科学实验测站观测资料订正过的欧洲中心FGGE-Ⅲb资料,对1979年7月月平均进行分析,计算了垂直速度、散度、垂直剖面函数和速度势函数等物理量以及上升气流轨迹,给出了夏季高原主体地区环流场的主要特征和详细的高原地区不同经纬度剖面垂直环流场的特征和分布. 配合夏季高原高层强大稳定的反气旋高压带,高原主体地区为整层上升气流区,但ω场有东西两个上升中心,它们是两个对流活动上升中心,两部的中心位于狮泉河和改则之间偏北的地区,东部的位于那曲一带. 本文给出了高原地区三个主要的经向环流圈(南北两侧下沉的小环流圈、跨赤道的季风环流圈)的经度位置和高原地区与西太平洋之间发生遥相关的主要纬度位置,发现在跨赤道的季风环流圈中,在赤道以南的下沉气流主要来自高原与15°N之间,从高原上升的气流仅在对流层上部(200hPa左右)跨过赤道.从高原西部上升的气流往往从非洲至印度尼西亚一带跨过赤道,而从高原东部及其东侧我国大陆上升的气流往往下沉在太平洋和北大西洋地区.  相似文献   

4.
本文是对第一部分的数值试验结果进行涡度方程以及位能、散度风动能和旋转风动能之间的能量转换函数诊断分析,并讨论了地形动力作用和潜热加热影响西南低涡形成和发展的物理过程.结果表明:从涡度收支上看,地形和潜热加热通过增大辐合使涡度增加.从能量转换上看,在低层地形和潜热加热加强位能向散度风动能转换以及散度风动能向旋转风动能转换;在高层,地形通过加强旋转风动能向散度风动能转换,使高空辐散增强,而潜热加热通过加强位能向散度风动能转换亦使高空辐散增强.  相似文献   

5.
赵平  胡昌琼  孙淑清 《大气科学》1992,16(2):177-184
本文是对第一部分的数值试验结果进行涡度方程以及位能、散度风动能和旋转风动能之间的能量转换函数诊断分析,并讨论了地形动力作用和潜热加热影响西南低涡形成和发展的物理过程.结果表明:从涡度收支上看,地形和潜热加热通过增大辐合使涡度增加.从能量转换上看,在低层地形和潜热加热加强位能向散度风动能转换以及散度风动能向旋转风动能转换;在高层,地形通过加强旋转风动能向散度风动能转换,使高空辐散增强,而潜热加热通过加强位能向散度风动能转换亦使高空辐散增强.  相似文献   

6.
本文使用青藏高原气象科学实验测站观测资料、欧洲中心FGGE-Ⅲb资料、GMS1地球同步卫星云图资料、河流水文资料以及其他一些有关的资料,详细分析了1979年7月青藏高原地区,尤其是高原西部地区的水汽状况、水汽输入的通道,讨论了夏季青藏高原地区高湿状况的维持机制. 通过研究,发现在1979年盛夏青藏高原西部也是一个高水汽区域,有利于大量的湿对流系统活动,但西部比东南部的水汽含量要略低些;潜热加热是夏季高原西部重要的热源之一;除了过去已知的在高原东南和仲巴、定日一带的两条水汽通道外,水汽还可从高原西侧边界进入  相似文献   

7.
本文使用青藏高原气象科学实验测站观测资料、欧洲中心FGGE-Ⅲb资料、GMS1地球同步卫星云图资料、河流水文资料以及其他一些有关的资料,详细分析了1979年7月青藏高原地区,尤其是高原西部地区的水汽状况、水汽输入的通道,讨论了夏季青藏高原地区高湿状况的维持机制. 通过研究,发现在1979年盛夏青藏高原西部也是一个高水汽区域,有利于大量的湿对流系统活动,但西部比东南部的水汽含量要略低些;潜热加热是夏季高原西部重要的热源之一;除了过去已知的在高原东南和仲巴、定日一带的两条水汽通道外,水汽还可从高原西侧边界进入高原西部.在讨论夏季高原地区高湿状况的维持机制时发现,相对于高原东部,只需要较少的水汽输入就足以维持高原西部大气的高湿状态;高原西部的降水、蒸发和向土壤中渗透是接近于平衡的,水分循环主要是局地的内循环.  相似文献   

8.
9.
利用大气能量循环框图,对比分析中国科学院大气物理研究所大气科学与地球流体力学数值模拟国家重点实验室(LASG/IAP)全球海-陆-气耦合系统模式(GOALS)两个版本(GOALS-2和GOALS-4),以及观测的全球平均大气能量循环的主要特征,并从能量循环贮蓄和转换项的纬向平均贡献去解释全球积分值改善和转坏的原因,以及诊断分析参数化方案变化后产生的影响.结果表明:模式的两个版本基本上能正确地模拟出全球能量循环的主要特征.旧版本GOALS-2能较好模拟全球积分值,常常是不同符号局地误差的相互抵消结果.新版本GOALS-4中某种局地过程的改善在一些情况下导致了全球积分值的转坏.引入辐射日变化参数化方案可能对能量循环各参数的局地贡献有着明显的影响.如纬向平均有效位能向瞬变涡动有效位能的斜压转换率、瞬变涡动有效位能向瞬变涡动动能的斜压转换率以及定常涡动动能的局地贡献有明显改善.南极地区不合实际的上升运动,是模拟的纬向平均有效位能与纬向平均动能之间的转换项全球积分值为负数的主要原因.  相似文献   

10.
2016年6月28日至7月1日在我国副热带地区发生了一次青藏高原低涡形成、发展及东传引发长江中下游地区暴雨天气的过程。本文利用MERRA2(Modern-Era Retrospective analysis for Research and Applications)再分析资料和TRMM(Tropical Rainfall Measurement Mission)降水资料对该过程进行位涡诊断分析。结果表明,夏季青藏高原地表加热具有强烈的日变化。高原地表加热由白天感热加热源到夜间辐射冷却源的转变直接影响高原上空非绝热加热率的垂直梯度,使高原近地层白天有位涡耗散,夜间有位涡制造,呈现明显的昼夜循环。当夜间的位涡制造异常强,以至不为白天的耗散所抵消时,通常位涡制造的昼夜循环被破坏,高原低涡形成,低涡周围随之出现降水。当低涡中心移动至高原东部时,中心附近伴随有强烈的降水,显著的凝结潜热加热使位涡中心增强,高原低涡进一步发展。随着低涡系统继续向东移出高原,长江中下游地区中高层出现位涡平流随高度增加的大尺度动力背景,上升运动发展,最终导致强降水发生。  相似文献   

11.
在对我省夏季持续干旱和雨涝进行气候分析的基础上,研究了夏季持续干旱和持续雨涝的环流特征差异、持续干旱的两种不同的环流型以及前期海温场的特征和演变规律。  相似文献   

12.
采用局地多尺度能量涡度分析法(MS-EVA)和基于MS-EVA的局地正则传输与不稳定性理论对北半球夏季MJO的动能变化进行了诊断分析。结果表明:1)引起对流层上层和下层MJO动能变化的主要影响因素是有效位能转换和气压梯度力做功,其中有效位能转换在对流中心以北有明显的正的大值带,是MJO的主要动能源;气压梯度力做功则主要是将从有效位能转换而来的动能在空间重新分布。2)引起对流层中下层MJO动能变化的主要因素是动能跨尺度传输作用,其中大尺度向MJO尺度的跨尺度传输在对流中心附近表现为明显的正值,因此是该高度上MJO的动能源,并受5~15°N区域上空正压不稳定制约。3)MJO与天气尺度系统间的动能传输则主要表现为MJO的动能汇,其与MJO环流场分布以及MJO对天气尺度波动动量通量的平流输送有关。  相似文献   

13.
利用"淮河流域东北部一次异常特大暴雨的数值模拟研究Ⅰ"的数值模拟结果,分析了几种不稳定对流涡度矢量(CVV)与中尺度深湿对流系统之间的关系,并分析了不稳定条件的增强和维持机制,结果表明:(1)中低层对流不稳定是深湿对流系统发生的先决条件,由于低层存在辐合,使得周围湿空气向暴雨区集中,对流单体在暴雨区汇聚,且发生合并增强,台风左前方向暴雨区输送对流不稳定能量等,是使得暴雨区对流不稳定重新建立和加强的重要机制.(2)深湿对流系统的中低层不仅有对流不稳定,而且还有斜压不稳定、条件对称不稳定,而中高层必须有湿斜压不稳定和条件对称不稳定.深湿对流系统中高层西(北)侧为负MPV2柱,东(南)侧为正MPV2柱;(3)深湿对流系统中惯性不稳定柱与惯性稳定柱相间分布,西(南)侧为负CVV柱,东(北)侧为正CVV柱,负CVV柱对深湿对流起激发作用;(4)惯性不稳定、湿倾斜不稳定和条件不稳定产生强的倾斜式对流,而强的倾斜式上升运动加强了深对流系统北侧高层的南风分量,因深对流系统南侧低层出现补偿性下沉气流,因而低层南风加强,高低空急流中心的加强会进一步加强对流的发展,使得惯性不稳定、湿倾斜不稳定及条件不稳定增强和维持,这是一个正反馈过程.(5)在暴雨中心以东维持一顺切变环流,同时暴雨中心的浅对流单体吸收来自南方的水汽和不稳定能量,中尺度辐合线与β中尺度涡旋对对流单体起组织和增强作用,对流系统中辐合、辐散柱相间分布,强散度柱与强涡柱互伴互耦,都有利于形成中尺度深湿对流系统,使不稳定向纵深方向发展,从而使得不稳定得到增强和维持.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号