首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Helium star–compact object binaries, and helium star–neutron star binaries in particular, are widely believed to be the progenitors of the observed double-neutron-star systems. In these, the second neutron star is presumed to be the compact remnant of the helium star supernova. In this paper, the observational implications of such a supernova are discussed, and in particular are explored as a candidate γ-ray burst mechanism. In this scenario, the supernova results in a transient period of rapid accretion on to the compact object, extracting via magnetic torques its rotational energy at highly super-Eddington luminosities in the form of a narrowly beamed, strongly electromagnetically dominated jet. Compton scattering of supernova photons advected within the ejecta, and photons originating at shocks driven into the ejecta by the jet, will cool the jet and can produce the observed prompt emission characteristics, including the peak-inferred isotropic energy relation, X-ray flash characteristics, subpulse light curves, energy-dependent time lags and subpulse broadening, and late time spectral softening. The duration of the burst is limited by the rate of Compton cooling of the jet, eventually creating an optically thick, moderately relativistically expanding fireball that can produce the afterglow emission. If the black hole or neutron star stays bound to a compact remnant, late term light curve variability may be observed as in SN 2003dh.  相似文献   

2.
Wolf-Rayet stars     
Summary Recent literature on Population I Wolf-Rayet star research extending from the Milky Way to blue compact dwarf galaxies is reviewed, broken down into inventory, basic parameters and galactic distribution, atmospheres, binaries, intrinsic variability, mass loss, enrichment and evolution. Also the incidence of Wolf-Rayet stars with variable non-thermal radio emission, excess X-ray fluxes, and episodic/periodic IR excesses is reviewed. These phenomena appear to be associated with wind-wind interaction in wide long-period WR+OB binaries and with wind-compact object interaction in WR+c binaries, with orbit sizes of the order of magnitude of the WR radio photosphere sizes or larger.  相似文献   

3.
We consider essential mechanisms for orbit shrinkage or 'hardening' of compact binaries in globular clusters (GCs) to the point of Roche lobe contact and X-ray emission phase, focusing on the process of collisional hardening due to encounters between binaries and single stars in the cluster core. The interplay between this kind of hardening and that due to emission of gravitational radiation produces a characteristic scaling of the orbit-shrinkage time with the single-star binary encounter rate γ in the cluster which we introduce, clarify and explore. We investigate possible effects of this scaling on populations of X-ray binaries in GCs within the framework of a simple 'toy' scheme for describing the evolution of pre-X-ray binaries in GCs. We find the expected qualitative trends sufficiently supported by data on X-ray binaries in Galactic GCs to encourage us towards a more quantitative study.  相似文献   

4.
The effects of eccentricity on the Hamiltonian dynamics of post-Newtonian spinning compact binaries and gravitational radiation from eccentric orbits are discussed. The simulation results of scans for chaos show that the eccentricity has a great effect on the dynamics without considering dissipation due to gravitational radiation. Moreover, both the dynamics behavior and the orbital eccentricity jointly modulate the gravitational waveforms, and the spin–spin coupling effect play an important role during the gravitational radiation of inspiral and coalescence. Moreover, the imprint of characteristic of the original system can be deduced from the time-domain and frequency-domain waveforms.  相似文献   

5.
Observations of a large population of millisecond pulsars (MSPs) show a wide divergence in the orbital periods (from approximately hours to a few months). In the standard view, low‐mass X‐ray binaries (LMXBs) are considered as progenitors for some MSPs during the recycling process. We present a systematic study that combines different types of compact objects in binaries such as cataclysmic variables (CVs), LMXBs, and MSPs. We plot them together in the so called Corbet diagram. Larger and different samples are needed to better constrain the result as a function of the environment and formations. A scale diagram showing the distribution of MSPs for different orbital periods and the aspects for their progenitors relying on accretion induced collapse (AIC) of white dwarfs in binaries. Thus massive CVs (M ≥ 1.1 M) can play a vital role on binary evolution, as well as of the physical processes involved in the formation and evolution of neutron stars and their magnetic fields, and could turn into binary MSPs with different scales of orbital periods; this effect can be explained by the AIC process. This scenario also suggests that some fraction of isolated MSPs in the Galactic disk could be formed through the same channel, forming the contribution of some CVs to the single‐degenerate progenitors of Type Ia supernova. Furthermore, we have refined the statistical distribution and evolution by using updated data. This implies that the significant studies of compact objects in binary systems can benefit from the Corbet diagram.Observations of a large population of millisecond pulsars (MSPs) show a wide divergence in the orbital periods (from approximately hours to a few months). In the standard view, low‐mass X‐ray binaries (LMXBs) are considered as progenitors for some MSPs during the recycling process. We present a systematic study that combines different types of compact objects in binaries such as cataclysmic variables (CVs), LMXBs, and MSPs. We plot them together in the so called Corbet diagram. Larger and different samples are needed to better constrain the result as a function of the environment and formations. A scale diagram showing the distribution of MSPs for different orbital periods and the aspects for their progenitors re  相似文献   

6.
The secular stellar mass loss causes an amplification of the orbital separation in fragile, common proper motion, binary systems with separations of the order of 1000 A.U. In these systems, companions evolve as two independent coeval stars as they experience negligible mutual tidal interactions or mass transfer. We present models for how post-main sequence mass-loss statistically distorts the frequency distribution of separations in fragile binaries. These models demonstrate the expected increase in orbital separation resulting from stellar mass-loss, as well as a perturbation of associated orbital parameters. Comparisons between our models and observations resulting from the Luyten survey of wide visual binaries, specifically those containing MS and white-dwarf pairs, demonstrate a good agreement between the calculated and the observed angular separation distribution functions.  相似文献   

7.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

8.
The landscape of Galactic X‐ray sources made of accreting binaries, isolated objects and active stellar coronae has been significantly modified by the advent of the Chandra, XMM‐Newton and INTEGRAL satellites. New types of relatively low X‐ray luminosity X‐ray binaries have been unveiled in the Galactic disc, while deep observations of the central regions have revealed large numbers of X‐ray binaries of so far poorly constrained nature. Because of the high spatial resolution needed and faint X‐ray luminosities generally emitted, studying the dependency of the X‐ray source composition with parent stellar population, Galactic disc, bulge, nuclear bulge, etc., is only practicable in our Galaxy. The evolutionary links between low LX X‐ray binaries and classical X‐ray luminous accreting systems are still open in many cases. In addition, the important question of the nature of the compact sources contributing to the Galactic ridge hard X‐ray emission remains unresolved. We review the most important results gathered by XMM‐Newton over the last years in this domain and show how future observations could be instrumental in addressing several of these issues. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We examine the proposal that the subset of neutron-star and black-hole X-ray binaries that form with Ap or Bp star companions will experience systemic angular-momentum losses due to magnetic braking, not otherwise operative with intermediate-mass companion stars. We suggest that for donor stars possessing the anomalously high magnetic fields associated with Ap and Bp stars, a magnetically coupled, irradiation-driven stellar wind can lead to substantial systemic loss of angular momentum. Hence, these systems, which would otherwise not be expected to experience 'magnetic braking', evolve to shorter orbital periods during mass transfer. In this paper, we detail how such a magnetic braking scenario operates. We apply it to a specific astrophysics problem involving the formation of compact black-hole binaries with low-mass donor stars. At present, it is not understood how these systems form, given that low-mass companion stars are not likely to provide sufficient gravitational potential to unbind the envelope of the massive progenitor of the black hole during a prior 'common-envelope' phase. On the other hand, intermediate-mass companions, such as Ap and Bp stars, could more readily eject the common envelope. However, in the absence of magnetic braking, such systems tend to evolve to long orbital periods. We show that, with the proposed magnetic braking properties afforded by Ap and Bp companions, such a scenario can lead to the formation of compact black-hole binaries with orbital periods, donor masses, lifetimes and production rates that are in accord with the observations. In spite of these successes, our models reveal a significant discrepancy between the calculated effective temperatures and the observed spectral types of the donor stars. Finally, we show that this temperature discrepancy would still exist for other scenarios invoking initially intermediate-mass donor stars, and this presents a substantial unresolved mystery.  相似文献   

10.
If the assumption of a catastrophic explosion during the formation of a neutron star is correct, the parent systems for klovsky's model of SCO XR-1 seem to have been very short-period white-dwarf binaries. A white dwarf originally in contact with its Roche limit is forced to lose mass. During the ejection of matter the primary may pass the white-dwarf mass limit and become a neutron star. The mass transfer time-scale can change from pulsational to thermal, and a mass flow of 10–9 M per year needed for SCO XR-1 can be understood, while at the same time the orbital period will increase.  相似文献   

11.
We systematically investigate the evolution of low-mass (0.35, 0.40, and 0.65M ) helium donors in semidetached binaries with white-dwarf accretors. The initial periods of the binaries are chosen in such a way that the helium abundance in the center of the models at the time of Roche lobe overflow varies between Y c = 0.98 and Y c ? 0.1. The results of our calculations can be used to analyze the formation scenarios and evolutionary status of AM CVn stars. We show that the minimum orbital periods of the semidetached binaries depend weakly on the total mass of the components and the evolutionary phase of the donor at the time of Roche lobe overflow and are 9–10 min. The differences in the mass transfer rates after P orb reaches its minimum in the range P orb ≈ 10–40 min do not exceed a factor of ~2.5. For P orb ? 20 min, the mass-losing stars are weakly degenerate homogeneous cooling objects; the He, C, N, O, and Ne abundances depend on the evolutionary phase at which Roche lobe overflow occurred. For the binaries that are currently believed to be the most probable candidates for AM CVn stars with helium donors, Y ? 0.4, X C ? 0.3, X O ? 0.25, and X N ? 0.5 × 10?2. In the binaries under consideration, once P orb ≈ 40 min has been reached, the mass loss time scale begins to exceed the thermal time scale of the donors, the latter begin to contract, their matter becomes degenerate, and the populations of AMCVn stars with white-dwarf and helium-star progenitors of their donors probably merge together.  相似文献   

12.
We use a two-temperature hydrodynamical formulation to determine the temperature and density structures of the post-shock accretion flows in magnetic cataclysmic variables (mCVs) and calculate the corresponding X-ray spectra. The effects of two-temperature flows are significant for systems with a massive white dwarf and a strong white-dwarf magnetic field. Our calculations show that two-temperature flows predict harder keV spectra than one-temperature flows for the same white-dwarf mass and magnetic field. This result is insensitive to whether the electrons and ions have equal temperature at the shock, but depends on the electron–ion exchange rate, relative to the rate of radiative loss along the flow. White-dwarf masses obtained by fitting the X-ray spectra of mCVs using hydrodynamic models including the two-temperature effects will be lower than those obtained using single-temperature models. The bias is more severe for systems with a massive white dwarf.  相似文献   

13.
Compact object mergers are one of the currently favoured models for the origin of gamma-ray bursts (GRBs). The discovery of optical afterglows and identification of the nearest, presumably host, galaxies allow the analysis of the distribution of burst sites with respect to these galaxies. Using a model of stellar binary evolution we synthesize a population of compact binary systems which merge within the Hubble time. We include the kicks in the supernovae explosions and calculate orbits of these binaries in galactic gravitational potentials. We present the resulting distribution of merger sites and discuss the results in the framework of the observed GRB afterglows.  相似文献   

14.
This work presents a possible detection mechanism for close, detached, neutron star–red dwarf binaries, which are expected to be the evolutionary precursors of low-mass X-ray binaries (LMXBs). Although this pre-low-mass X-ray binary (pre-LMXB) phase of evolution is predicted theoretically, as yet no such systems have been identified observationally. The calculations presented here suggest that the X-ray luminosity of neutron star wind accretion in a pre-LMXB system can be expected to exceed the intrinsic X-ray luminosity of the red dwarf secondary star. Furthermore, the temperature of the radiation emitted from the neutron star wind accretion process is expected, within the confines of a reasonable set of conditions, to lie within the detection range of X-ray satellites. Sources with X-ray luminosities greater than that expected for a red dwarf star, but the positions of which coincide with that of a red dwarf star, are then candidate pre-LMXB systems. These candidate systems should be surveyed for the radial velocity shifts that would occur as a result of the orbital motion of a red dwarf star within a close binary system containing a high-mass compact object.  相似文献   

15.
We present a new explanation for the origin of the steep power-law(SPL) state of X-ray binaries.The power-law component of X-ray emission is the synchrotron radiation of relativistic electrons in highly magnetized compact spots orbiting near the inner stable circular orbit of a black hole.It has a hard spectrum that extends to above MeV energies,which is determined by the electron acceleration rate.These photons are then down-scattered by the surrounding plasma to form an observed steep spectrum.We discuss ...  相似文献   

16.
Some massive binaries should contain energetic pulsars which inject relativistic leptons from their inner magnetospheres and/or pulsar wind regions. If the binary system is compact enough, then these leptons can initiate inverse Compton (IC) e± pair cascades in the anisotropic radiation field of a massive star. γ-rays can be produced in the IC cascade during its development in a pulsar wind region and above a shock in a massive star wind region where the propagation of leptons is determined by the structure of a magnetic field around the massive star. For a binary system with specific parameters, we calculate phase-dependent spectra and fluxes of γ-rays escaping as a function of the inclination angle of the system and for different assumptions on injection conditions of the primary leptons (their initial spectra and location of the shock inside the binary). We conclude that the features of γ-ray emission from such massive binaries containing energetic pulsars should allow us to obtain important information on the acceleration of particles by the pulsars, and on interactions of a compact object with the massive star wind. Predicted γ-ray light curves and spectra in the GeV and TeV energy ranges from such binary systems within our Galaxy and Magellanic Clouds should be observed by future AGILE and GLAST satellites and low-threshold Cherenkov telescopes, such as MAGIC, HESS, VERITAS or CANGAROO III.  相似文献   

17.
A new sample of contact systems, consisting of more than 100 stars, was created for binaries for which the physical parameters have been determined using both photometric light curves and radial velocity measurements of both components. Properties of components are discussed including their evolutionary status.  相似文献   

18.
We investigate the conditions by which neutron star retention in globular clusters is favoured. We find that neutron stars formed in massive binaries are far more likely to be retained. Such binaries are likely to then evolve into contact before encountering other stars, possibly producing a single neutron star after a common envelope phase. A large fraction of the single neutron stars in globular clusters are then likely to exchange into binaries containing moderate-mass main-sequence stars, replacing the lower-mass components of the original systems. These binaries will become intermediate-mass X-ray binaries (IMXBs), once the moderate-mass star evolves off the main sequence, as mass is transferred on to the neutron star, possibly spinning it up in the process. Such systems may be responsible for the population of millisecond pulsars (MSPs) that has been observed in globular clusters. Additionally, the period of mass-transfer (and thus X-ray visibility) in the vast majority of such systems will have occurred 5–10 Gyr ago, thus explaining the observed relative paucity of X-ray binaries today, given the MSP population.  相似文献   

19.
The new approach outlined in Paper I to follow the individual formation and evolution of binaries in an evolving, equal point-mass star cluster is extended for the self-consistent treatment of relaxation and close three- and four-body encounters for many binaries (typically a few per cent of the initial number of stars in the cluster mass). The distribution of single stars is treated as a conducting gas sphere with a standard anisotropic gaseous model. A Monte Carlo technique is used to model the motion of binaries, their formation and subsequent hardening by close encounters, and their relaxation (dynamical friction) with single stars and other binaries. The results are a further approach towards a realistic model of globular clusters with primordial binaries without using special hardware. We present, as our main result, the self-consistent evolution of a cluster consisting of 300 000 equal point-mass stars, plus 30 000 equal-mass binaries over several hundred half-mass relaxation times, well into the phase where most of the binaries have been dissolved and evacuated from the core. The cluster evolution is about three times slower than found by Gao et al. Other features are rather comparable. At every moment we are able to show the individual distribution of binaries in the cluster.  相似文献   

20.
In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l >( GMR ∗)1/2 (where M and R ∗ are the mass and radius of the compact object) intersect outside R ∗ and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l <( GMR ∗)1/2, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a 'Moon-like' X-ray source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号