首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inter-annual variability in total precipitation can lead to significant changes in carbon flux. In this study, we used the eddy covariance (EC) technique to measure the net CO2 ecosystem exchange (NEE) of an alpine meadow in the northern Tibetan Plateau. In 2005 the meadow had precipitation of 489.9 mm and in 2006 precipitation of 241.1 mm, which, respectively, represent normal and dry years as compared to the mean annual precipitation of 476 mm. The EC measured NEE was 87.70 g C m-2 yr-1 in 2006 and -2.35 g C m-2 yr-1 in 2005. Therefore, the grassland was carbon neutral to the atmosphere in the normal year, while it was a carbon source in the dry year, indicating this ecosystem will become a CO2 source if climate warming results in more drought conditions. The drought conditions in the dry year limited gross ecosystem CO2 exchange (GEE), leaf area index (LAI) and the duration of ecosystem carbon uptake. During the peak of growing season the maximum daily rate of NEE and Pmax and α were approximately 30%-50% of those of the normal year. GEE and NEE were strongly related to photosynthetically active radiation (PAR) on half-hourly scale, but this relationship was confounded by air temperature (Ta), soil water content (SWC) and vapor pressure deficit (VPD). The absolute values of NEE declined with higher Ta, higher VPD and lower SWC conditions. Beyond the appropriate range of PAR, high solar radiation exacerbated soil water conditions and thus reduced daytime NEE. Optimal Ta and VPD for maximum daytime NEE were 12.7℃ and 0.42 KPa respectively, and the absolute values of NEE increased with SWC. Variation in LAI explained around 77% of the change in GEE and NEE. Variations in Re were mainly controlled by soil temperature (Ts), whereas soil water content regulated the responses of Re to Ts.  相似文献   

2.
We investigated the effects of winter and summer drought on plants of the Colorado Plateau in western North America. This winter-cold, summer-hot desert region receives both winter and summer precipitation. Droughts were imposed for two consecutive years using rainout shelters. Here, we examine drought effects on the hydrologic interactions between plants and soil. We chose three perennial species for this study, representing different rooting patterns and responsiveness to precipitation pulses: Oryzopsis hymenoides, a perennial bunch grass with shallow roots; Gutierrezia sarothrae, a subshrub with dimorphic roots; and Ceratoides lanata, a predominantly deep-rooted woody shrub. Drought effects on plant water status were qualitatively similar among species, despite morphological differences. Summer drought affected the water status of all species more negatively than winter drought. Isotopic analysis of stem water revealed that all three species took up deeper soil water under drought conditions and shallow soil water after a large rainfall event in summer. Thus all three species appeared to use the same water sources most of the time. However, after a particularly dry summer, only the deepest-rooted species continued to take up soil water, while the more shallow-rooted species were either dead or dormant. Our study suggests therefore that increased occurrence of summer drought could favor the most deep-rooted species in ecosystem.  相似文献   

3.
A simple deterministic simulation model for landscape-scale soil water deficits has been developed. Standard weather station data are used to estimate ‘daily’ precipitation and actual (regional) evapotranspiration (AET). The balance is added to soil moisture, which is accounted by a simple bucket model. AET is the daily integral of the lesser of supply and demand: supply is governed by current soil moisture, demand by estimated net radiation and temperature. The model estimates geographical patterns of soil water deficit at a scale suitable for comparison with the distributions of plant species and vegetation types. The model provides a way of quantifying soil moisture stress in biogeographical research.  相似文献   

4.
The effects of precipitation timing on sagebrush steppe vegetation   总被引:5,自引:1,他引:4  
Changes in precipitation patterns and inputs have the potential to cause major changes in productivity, composition, and diversity of terrestrial plant communities. Vegetation response to altered timing of precipitation was assessed during a 7-year experiment in an Artemisia tridentata spp. wyomingensis community in the northern Great Basin, USA. Four permanent rainout shelters excluded natural rainfall, with seasonal distribution of precipitation controlled with the use of an overhead sprinkler system. Precipitation treatments under each shelter were WINTER, SPRING, and CURRENT. The WINTER treatment received 80% of its water between October and March; in the SPRING treatment 80% of total water was applied between April and July; and the CURRENT treatment received precipitation matching the site's long-term (50 years) distribution pattern. A CONTROL treatment, placed outside each shelter replicate, received natural precipitation inputs. CURRENT, WINTER, and CONTROL treatments had similar in soil water-content patterns and thus, there were few consistent differences in vegetation response. The SPRING treatment resulted in more bare-ground and lower plant productivity compared to other shelter treatments. This result contrasted with our initial hypothesis that shallower-rooted grasses would gain a competitive advantage over shrubs if precipitation was shifted from winter to spring. Our results also demonstrated the resilience of these communities to climate perturbation as many of the vegetation shifts did not begin until the fourth year after treatments were applied.  相似文献   

5.
贾文雄  王洁  张禹舜  刘亚荣 《地理科学》2016,36(8):1243-1251
通过野外调研和室内实验,研究了祁连山南坡灌丛草甸地上生物量的生长季变化,并对地上生物量与水热因子的关系进行了探讨。结果表明:在不同区域群落结构有所不同,覆盖度越低,上层和下层的植物高度越低,丰富度和多样性越小。但均匀度还受草场退化阶段的影响,群落结构相对稳定,植物的均匀度越高;地上生物量的年内变化是单峰曲线,乌鞘岭和门源的地上生物量在7月份最大,祁连和野牛沟的地上生物量在9月份最大;地上生物量的积累与前1月和前2月的气温和降水正相关,与前4月的气温也正相关,并且对气温变化的敏感性大于降水,但与地温和土壤水分的相关性不明显,前1月表层地温较高对地上生物量的积累有积极作用;对于地上生物量积累,日气温、日相对湿度、降水量有直接正向作用,而日最高气温、日最低气温、日水汽压有直接负向作用,5 cm、20 cm地温和0~10 cm、20~30 cm土壤水分也有直接正向作用,而10 cm地温和10~20 cm土壤水分也有直接负向作用。  相似文献   

6.
杨泽粟  张强  赵鸿 《中国沙漠》2014,34(4):1055-1063
于2011年在黄土高原半干旱地区以平地不覆膜为对照,研究了不同沟垄和覆膜方式对马铃薯叶片和土壤水势水势的影响。结果表明:不同沟垄和覆膜方式在不同土层和不同生育期对土壤和叶片水势的影响差异显著。(1)土壤水势日变化趋势:0~20 cm土层,土垄处理在开花期为先下降后上升型,土垄和覆膜垄处理在块茎膨大期为先下降后上升型,覆膜垄和全膜双垄沟播处理在成熟期为先下降后上升型,其余为逐渐下降型;20~40 cm土层,各处理土壤水势呈逐渐下降趋势。(2)叶片水势日变化趋势:开花期和块茎膨大期表现为双低谷型,双低谷分别在13:00和17:00,成熟期为“V”型,即单低谷型,低谷出现在17:00。各处理变化趋势相同,但水势存在差异。土垄处理在水分关键期(开花期和块茎膨大期)叶片水势显著高于其他处理,而全膜双垄沟播处理在成熟期最高。(3)生育期土壤水势和叶片水势均表现为先减小后增大的趋势。20~40 cm土层对叶片水势影响较大,土垄处理在该土层具有较好的水分状态,蒸腾作用较强加速了水分运移速率,是导致覆膜垄和全膜双垄沟播处理水势低于土垄的主要原因。在前期降雨较少的年份,由于较小的蒸腾作用,土垄处理可以保证马铃薯承受较小的水分胁迫;在前期降雨量较多的年份,覆膜垄和全膜双垄沟播处理则可以凭借其较大的蒸腾作用发挥较大的增产效果。  相似文献   

7.
额济纳绿洲主要植物的水势与环境因子的关系   总被引:28,自引:17,他引:11  
通过对额济纳绿洲几种植物的水势分析,结果表明,水势从小到大排序为:红砂 < 柽柳、苏枸杞、苦豆子 < 胡杨、梭梭、骆驼蓬 < 花花柴 < 沙拐枣。胡杨和柽柳水势日变化在5月和7月大体呈"V"型;9月份日变化大体呈直线型。不同植物对环境条件反应不同,乔木、灌木的水势与深层土壤中含水量密切相关,而草本对较浅层的土壤含水量相关。阔叶植物对大气中的水分相关性更强。植物水势与大气温度相关性最差。  相似文献   

8.
Fruiting of cotton plant is determined and influenced by cultivar, climatic conditions, management practices and pests. An understanding of the flowering and boll retention patterns of cotton cultivars can contribute to more efficient and economical crop management. The objective of this investigation was to study the effect of various climatic factors on flower and boll production of Egyptian cotton. This could be used in formulating advanced predictions of the effect of certain climatic conditions on the production of Egyptian cotton. Two uniform field trials, using cotton Gossypium barbadense cv. Giza 75 were carried out in 1992 and 1993 at the Agricultural Research Station, Agricultural Research Center, Ministry of Agriculture, Giza, Egypt, to investigate the relationships between climatic factors, flower and boll production. Climatic factors included maximum and minimum air temperatures along with their difference, evaporation, surface soil temperature (grass temperature or green cover temperature) at 0600 and 1800 h°C−1, sunshine duration, maximum and minimum humidity and wind speed. The effects of climatic factors on flower and boll production were quantified in the absence of water and nutritional deficits and damage effects of insects. Results obtained indicate that evaporation, sunshine duration, humidity, surface soil temperature at 1800 h, and maximum air temperature, were the important climatic factors that significantly affect flower and boll production of Egyptian cotton. Consequently, applying appropriate specific cultural practices that minimize the deleterious effect of these factors will lead to an improvement in cotton yield.  相似文献   

9.
靳立亚  秦宁生 《中国沙漠》1997,17(3):230-236
利用西北四省区73个台站1960~1990年逐月降水量和平均气温的距平资料,采用综合的经验正交函数(EOF)分析方法,对西北四省区春(3~5月份)、夏(6~8月份)、秋(9~11月份)3个季节降水、气温异常的时空分布特征进行了诊断研究,得到了几种降水和气温异常的典型配置及其反映这些典型场的年际演变规律的时间系数,并在此基础上进一步分析了降水、气温异常的时变特征以及与西北四省区出现较严重干旱年份之间的关系。结果表明,西北四省区不同区域发生较严重干旱的年份与某些时间系数出现极值的年份存在很好的对应关系。  相似文献   

10.
Activity patterns, social behaviour, and reproductive success of Arabian oryx were monitored in a reintroduced population in Mahazat as-Sayd Protected Area, Saudi Arabia. During the first year of the study, precipitation was 38% lower than the long-term average, whereas rainfall in the following year resulted in precipitation that was 92.8% of the long-term average. These dramatically different rainfall conditions corresponded with distinct patterns in various environmental parameters (air and soil temperature, humidity, wind speed, solar radiation, air pressure). Daily activity patterns, the frequency of social behaviours, and foraging activity were significantly reduced during the drought period. The frequency of reproductive behaviour was significantly related to daytime, air temperature and radiation, with a pronounced reduction of reproductive activities during the drought. Monthly rates of conceptions were considerably lower during the drought. Our results substantiate the idea that extended dry periods affect the population development of Oryx, but also raise questions about habitat suitability and carrying capacity. Future management of Arabian oryx should consider extreme climatic events as factors influencing various aspects of the ecology and behaviour of this species. This aspect may become even more important in the face of climate change, including a future increase of extreme climatic events.  相似文献   

11.
森林植被的降雨再分配过程是影响区域水资源利用效率以及生态系统生产力的重要因素.于2018年5—8月观测27 a生樟子松人工林降雨再分配特征,探究降雨再分配的比例变化对林地水分平衡的影响机制,分析、量化林内穿透雨、林冠截留、树干径流、枯落物层入渗部分产生的阈值.结果 表明:樟子松林内穿透雨量占同期降雨量的86.45%,穿...  相似文献   

12.
在西双版纳山地选取3个海拔梯度,对热带季节雨林4种主要树种进行幼苗移栽试验,观测幼树生长、死亡沿海拔梯度的变化,目的在于明确海拔变化对热带季节雨林主要树种幼苗生长、死亡的影响,热带季节雨林主要树种幼苗的生长是否在低海拔地区优于在高海拔地区.结果表明,4种幼苗对海拔变化的反应并不相同.绒毛番龙眼和云南玉蕊幼苗的生长和存活主要是受到温度的限制,随海拔的变化表现出显著的差异,这两种幼苗在低海拔上的生长显著优于在中、高海拔上,而云南肉豆蔻和小叶红光树没有表现出在低海拔上优于中、高海拔的特征,这可能是由于它们不适应强光照的生活环境而造成的.  相似文献   

13.
Many arid basins in western North America are likely to experience future changes in precipitation timing and amount. Where shallow water tables occur, plant acquisition of groundwater and soil water may be influenced by growing season precipitation. We conducted a rainfall manipulation experiment to investigate responses of four common native plant species to ambient, increased, and decreased summer monsoon rainfall. We measured plant xylem pressure potentials (Ψ) and stable oxygen isotope signatures (δ18O) to assess effects of altered precipitation on plant water relations and water acquisition patterns. Reduced rainfall decreased Ψ more in the grasses Sporobolus airoides and Distichlis spicata than the more deeply rooted shrubs Sarcobatus vermiculatus and Ericameria nauseosa. E. nauseosa had little response to natural or experimental differences in available soil water. Plant xylem water δ18O indicated that S. airoides and D. spicata are almost entirely dependent on rain-recharged soil water, while E. nauseosa is almost entirely groundwater-dependent. Sarcobatus vermiculatus used groundwater during dry periods, but utilized precipitation from soil layers after large rainfall events. Persistent changes in precipitation patterns could cause shifts in plant community composition that may alter basin-scale groundwater consumption by native plants, affecting water availability for human and ecosystem uses.  相似文献   

14.
Hydraulic redistribution is the process of passive water movement from deeper moist soil to shallower dry soil layers using plant roots as conduits. Results from this study indicate that this phenomenon exists among two shrub species (Guiera senegalensis and Piliostigma reticulatum) that co-exist with annual food crops in Sahelian agro-ecosystems. Real-time measurements were conducted for soil water content, soil water potential and microclimate variables notably; air temperature, relative humidity, wind speed, precipitation and solar irradiance. Additionally, sap flow measurements were conducted in shrub roots using the thermal dissipation technique on intact and coppiced shrubs. Monthly predawn leaf water potential was measured using a portable pressure chamber. Soil water potential (Ψs) at the 20 cm depth declined significantly during the dry season with diel changes in Ψs of −0.6 to −1.1 MPa. These variations were attributed to passive water release from shrub roots resulting in overnight rewetting of drier upper soil layers. Sap flow measurements on tap and lateral shrub roots indicated daily reversals in the direction of flow. During the peak of the dry season, both positive (toward shrub) and negative (toward soil) flows were observed in lateral shrub roots with sap flow in the lateral roots frequently negative at night and rapidly becoming positive soon after sunrise. The negative sap flow at night in superficial lateral roots and the periodic positive flow in the descending tap roots were indicative of hydraulic redistribution. Hydraulic redistribution may be an important mechanism for drought stress avoidance while maintaining plant physiological functions in both shrubs and neighboring annuals in water-limited environments.  相似文献   

15.
Dryland ecosystems are highly vulnerable to environmental changes. Monitoring is vital in order to evaluate their response to fluctuating rainfall and temperature patterns for long-term ecosystem safeguarding. Monitoring of long term changes of normalized difference vegetation index (NDVI) and climate variables are fundamental for better understanding of change trajectories in dryland ecosystem, and to ascertain their potential interaction with anthropogenic drivers. In this study, we identify determinant factors of dryland changes by using MODIS NDVI, precipitation and temperature data for Breaks for Additive Seasonal and Trend (BFAST) and Mann Kendall test statistic. BFAST predicts iteratively time and number of changes within a time series data to depict the size and direction of changes. Analysis of NDVI, precipitation and temperature time series data showed substantial changes during the study period of 2000–2014. There is a reduction trend in vegetation showed by the decline in NDVI, with significant breakpoints till 2009 and recovery afterwards, without a significant change in annual trends of precipitation (α < 0.05) for the same study period. Furthermore 2 positive climate trends were founded: a) a significant positive trend on long term annual rainfall during the main rainy seasons and; 2) a significant (α < 0.05) annual increment of the long term mean minimum and mean maximum temperature of 0.03 °C/year and 0.04 °C/year, respectively. This assessment showed that climate variables cannot be considered as the main factors in explaining the observed patterns of vegetation dynamics. Seasonal and interannual precipitation changes have a lower weight as driving factors for the reduction in vegetation trends. Hence, the decline in vegetation productivity of the region can be attributed to the increasing pressure of human activities.  相似文献   

16.
中国北方沙尘暴与地温场的相关分析   总被引:1,自引:0,他引:1  
利用1954—2003年历年沙尘暴实测资料,分析了沙尘暴与3.2 m深度地温场及降水场的关系。结果表明:强沙尘暴多发年与少发年地温场分布差异明显;多发年地温偏低,少发年地温偏高。4月多雨时,沙尘暴频数少,反之频数多。3.2 m地温具有很好的季际连续性,故可以利用冬季甚至上年秋季的地温场来预测春季沙尘暴频次的多寡。  相似文献   

17.
祁连山中部树木年轮宽度与气候因子的响应关系及气候重建   总被引:33,自引:13,他引:20  
研究了祁连山中部不同海拔高度青海云杉的树轮宽度对气候因子的响应,重建了祁连山中部 230 a以来春季3~5月的降水和 170 a以来夏季6~8月的气温序列。结果分析发现,不同高度的云杉树轮生长对春季降水极为敏感,呈现显著正相关;对夏季气温的响应程度,各海拔高度却不相同,夏季气温对上、下限云杉生长有显著影响,但对于森林中部云杉作用并不明显,总体表现为负相关,夏季高温对树木生长不利。气候重建结果发现,祁连山中部的春季230 a以来经历了大幅度长阶段的干湿变化,存在明显的 69 a和 21a周期;170 a以来夏季气温变化频繁,存在明显的2~4a周期。目前,祁连山中部正处于相对干旱和温暖时期,呈现出向暖干方向发展的趋势。  相似文献   

18.
固沙植被区两类结皮斑块土壤呼吸对降雨脉冲的响应   总被引:2,自引:1,他引:1  
赵蓉  李小军  赵洋  杨昊天  李刚 《中国沙漠》2015,35(2):393-399
与降水事件密切相关的土壤水分有效性是荒漠生态系统土壤呼吸的重要驱动因子。研究了固沙植被区以藓类和藻类为主的生物土壤结皮斑块土壤呼吸对模拟降雨(5、10、20 mm)的响应。结果表明:3种降雨量对不同结皮斑块土壤呼吸均有显著的激发作用, 但2种土壤的响应特征不同。藓类结皮斑块土壤呼吸速率在降雨后0.5 h达到最大值, 而藻类结皮斑块土壤在降雨后2 h达到最大值, 其呼吸速率分别是降雨前土壤呼吸速率的43~58、21~25倍,随后, 两类结皮斑块土壤呼吸速率逐渐下降并恢复到降雨前水平。随着降雨量的增加, 藓类结皮斑块土壤最大呼吸速率和平均呼吸速率显著增大, 而藻类结皮斑块土壤则无明显变化; 2种土壤碳释放量均随着降雨量的增大而增加。在相同降雨条件下, 藓类结皮斑块土壤呼吸速率峰值和平均值及碳释放量均显著大于藻类结皮斑块土壤。表明生物土壤结皮和降雨量均对荒漠生态系统土壤呼吸起着重要的调控作用。  相似文献   

19.
黄河小花间石山林区产汇流特征   总被引:2,自引:1,他引:1  
产汇流机理研究是水文模拟的基础 ,从实测水文资料出发进行深入分析是认识产汇流特性的有效手段。黄河小花间 (小浪底 -花园口间 )洛河卢氏以上流域为典型的石山林区 ,产汇流特性不同于黄河流域的一般地区。从选取的 43场暴雨洪水资料分析得出 :该地区的暴雨空间分布不均匀 ,存在着明显的暴雨中心 ,产流机制和产流模式复杂。进一步分析变化环境下的降水径流特性后 ,发现年径流量的变化主要受控于降水特性 ,下垫面的改变和人类活动对年降水径流关系影响并不显著 ;但对次洪而言 ,该区生态保护和水土保持措施在一定程度上减少了产流能力 ,提高了暴雨径流相关性。  相似文献   

20.
珠江流域多尺度极端降水时空特征及影响因子研究   总被引:3,自引:0,他引:3  
基于珠江流域74个气象站点1952~2013年逐日降水和气温数据,采用POT抽样、Mann-Kendall(MK)趋势检验、泊松回归等方法,从降水量级、降水频率及发生时间等方面系统分析了珠江流域年、雨季及旱季3个时间尺度上的极端降水特征,并从降水对温度变化响应及ENSO影响等角度,探讨了极端降水变化特征的机理。研究表明:珠江流域极端降水年内分布不均,多发于4~9月,其中6月份发生频率最高;珠江流域极端降水频率在雨季及年际间分布较为均匀。但在旱季,珠三角地区极端降水在不同年份差异性较大;在雨季及年际尺度上,极端降水年序列趋势性并不显著;而相对干旱季节,极端降雨量级、发生频次均随年份增加呈显著上升趋势,且发生时间提前。珠江流域农业以水稻(Oryzasativa)种植为主,旱季极端降水增加易导致冬汛及其引起的作物倒伏与农田渍涝等灾害,同时对秋冬防洪提出新的挑战,需要引起人们的关注;温度升高和ENSO事件对珠江流域极端降水过程有显著影响。从ENSO影响的角度讲,在厄尔尼诺年,珠江流域西部极端降水量级和频率增加,而流域东部沿海区域极端降水量级减少,时间延后。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号