首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reconstruction of the climatic history during the past several hundred years requires a sufficient geographical coverage of combined climate proxy series. Especially in order to identify causal connections between the atmosphere and the ocean, inclusion of marine records into composite climate time series is of fundamental importance. We present two skeletal δ 18O chronologies of coral skeletons of Diploria labyrinthiformis from Bermuda fore-reef sites covering periods in the nineteenth and twentieth centuries and compare them with instrumental temperature data. Both time series are demonstrated to display sea-surface temperature (SST) variability on inter-annual to decadal time scales. On the basis of a specific modern δ 18O vs instrumental SST calibration we reconstruct a time series of SST anomalies between AD 1350 and 1630 covering periods during the Little Ice Age. The application of the coral δ 18O vs temperature relationship leads to estimates of past SST variability which are comparable to the magnitude of modern variations. Parallel to δ 18O chronologies we present time series of skeletal bulk density. Coral δ 18O and skeletal density reveal a strong similarity during Little Ice Age, confirming the reliability of both proxy climate indicators. The past coral records, presented in this study, share features with a previously published climate proxy record from Bermuda and a composite time series of reconstructed Northern Hemisphere summer temperatures. The coral proxy data presented here represent a valuable contribution to elucidate northern Atlantic subtropical climate variation during the past several centuries. Received: 9 November 1998 / Accepted: 13 September 1999  相似文献   

2.
 116-year record of coral skeletal δ18O is presented from a colony of Porites lutea from Ningaloo Reef, western Australia. Interannual variability of sea-surface temperatures (SST) inferred from skeletal δ18O is dominated by a 9.5-year period, and may constitute a characteristic signal of the Leeuwin Current. On long-terms coral skeletal δ18O indicates a near-continuous increase of SST at Ningaloo Reef over one century. The skeletal δ18O time series was checked for the presence of seasonal cooling events resulting from major volcanic eruptions. An ∼1  °C cooling is evident following the eruption of Pinatubo in 1991, which reproduces the results of previous investigations. However, only weak or no signals can be related to the eruptions of Krakatau (1883) and Agung (1963). Received: 9 November 1998 / Accepted: 12 April 1999  相似文献   

3.
The depth profiles of electrical conductance, δ18O,210Pb and cosmogenic radio isotopes10Be and36Cl have been measured in a 30 m ice core from east Antarctica near the Indian station, Dakshin Gangotri. Using210Pb and δ18O, the mean annual accumulation rates have been calculated to be 20 and 21 cm of ice equivalent per year during the past ∼ 150 years. Using these acumulation rates, the volcanic event that occurred in 1815 AD, has been identified based on electrical conductance measurements. Based on δ18O measurements, the mean annual surface air temperatures (MASAT) data observed during the last 150 years indicates that the beginning of the 19th century was cooler by about 2‡ C than the recent past and the middle of 18th century. The fallout of cosmogenic radio isotope10Be compares reasonably well with those obtained on other stations (73‡ S to 90‡ S) from Antarctica and higher latitudes beyond 77‡N. The fallout of36Cl calculated based on the present work agrees well with the mean global production rate estimated earlier by Lal and Peters (1967). The bomb pulse of36Cl observed in Greenland is not observed in the present studies – a result which is puzzling and needs to be studied on neighbouring ice cores from the same region.  相似文献   

4.
The stable isotopic analyses (δ18O and δ13C) of a coralFavia speciosa spanning forty two years (1948–89 A.D.), collected from the Pirotan island (22.6°N, 70°E) in the Gulf of Kutch have been carried out to assess its potential for retrieving past environmental changes in this region. It is seen that the summer (minima) δ18O variations in the coral CaCO3 are negatively correlated with seasonal (summer) monsoon rainfall in the adjoining region of Kutch and Saurashtra and a qualitative reconstruction of historical rainfall variations in this region can be obtained by analyzing the δ18O in this species of coral. The observed mean seasonal range of δ18O variations is 0.34 ±0.17‰ (n = 42), whereas the expected range calculated (from available SST and measured δ18O of sea water) is ∼ 1.1 ±0.15‰ The difference is due to the coarse resolution of sampling, which can be corrected. The seasonal range in δ13C is ∼ l‰ and is explained by changes in: a) the light intensity related to the cloudiness during monsoons and b) phytoplankton productivity.  相似文献   

5.
The relationship between the variation of δ 18O in precipitation in Yarlungzangbo River basin and the moisture flux was analyzed with NCEP/NCAR reanalysis grid data and δ 18O in precipitation at four stations (Lazi, Nugesha, Yangcun and Nuxia) of the region investigated. In terms of spatial variations, there is obviously a positive correlation between them for the entire basin. With the decrease in moisture flux from the downstream to the upstream area, δ 18O in precipitation became gradually decreased. However, in terms of temporal variations, higher δ 18O in precipitation during spring is linked to small moisture flux while low δ 18O in precipitation during summer is linked to large moisture flux. A model involving meteorological data from NCEP/NCAR was subsequently set up which successfully traced the moisture transport trajectories at Yangcun station. Based on the traced moisture transport trajectories and the δ 18O in precipitation at Yangcun station, the relationship between δ18O in precipitation in Yarlungzangbo River basin and the moisture transport history was discussed. We found that the humid marine air mass from the Indian Ocean in general has significantly lower δ 18O values than the continental air mass from the north or local re-evaporation. The fluctuation of δ 18O in precipitation during the monsoon season is very pronounced; the lower values are usually related to farther distance and multilayer moisture transport, as well as moisture crossing the Himalaya Mountains. __________ Translated from Advances in Earth Science, 2007, 22(8): 842–850 [译自: 地球科学进展]  相似文献   

6.
To reconstruct oceanographic variations in the subtropical South Pacific, 271-year long subseasonal time series of Sr/Ca and δ18O were generated from a coral growing at Rarotonga (21.5°S, 159.5°W). In this case, coral Sr/Ca appears to be an excellent proxy for sea surface temperature (SST) and coral δ18O is a function of both SST and seawater δ18O composition (δ18Osw). Here, we focus on extracting the δ18Osw signal from these proxy records. A method is presented assuming that coral Sr/Ca is solely a function of SST and that coral δ18O is a function of both SST and δ18Osw. This method separates the effects of δ18Osw from SST by breaking the instantaneous changes of coral δ18O into separate contributions by instantaneous SST and δ18Osw changes, respectively. The results show that on average δ18Osw at Rarotonga explains ∼39% of the variance in δ18O and that variations in SST explains the remaining ∼61% of δ18O variance. Reconstructed δ18Osw shows systematic increases in summer months (December-February) consistent with the regional pattern of variations in precipitation and evaporation. The δ18Osw also shows a positive linear correlation with satellite-derived estimated salinity for the period 1980 to 1997 (r = 0.72). This linear correlation between reconstructed δ18Osw and salinity makes it possible to use the reconstructed δ18Osw to estimate the past interannual and decadal salinity changes in this region. Comparisons of coral δ18O and δ18Osw at Rarotonga with the Pacific decadal oscillation index suggest that the decadal and interdecadal salinity and SST variability at Rarotonga appears to be related to basin-scale decadal variability in the Pacific.  相似文献   

7.
Density, δ18O and δ13C were measured along two tracks, one close to the central growth axis and the other, ∼20ℴ off the axis, in a coral (Porites lutea) collected from the Stanley Reef, Central Great Barrier Reef, Australia. The δ18O variations in the coral are well correlated with sea surface temperature changes. The common variances between the two tracks were about 60% in the δ18O, δ{13}C, and the skeletal density variations. Part of the noise (40%) could be due to the difficulty of sampling exactly time contemporaneous parts of each band along the two tracks and part of it could be due to genuine intraband variability. In spite of the intraband variability, the time series obtained from the two tracks are similar, indicating that the dominant causative factor for the isotopic variations is external, i.e., the environmental conditions that prevail during the growth of the coral; density band formation does not appear to be directly controlled by the sea surface temperature.  相似文献   

8.
Boron, chloride, sulfate, δD, δ18O, and 3H concentrations in surface water and groundwater samples from the Sulphur Bank Mercury Mine (SBMM), California, USA were used to examine geochemical processes and provide constraints on evaporation and groundwater flow. SBMM is an abandoned sulfur and mercury mine with an underlying hydrothermal system, adjacent to Clear Lake, California. Results for non-3H tracers (i.e., boron, chloride, sulfate, δD, and δ18O) identify contributions from six water types at SBMM. Processes including evaporation, mixing, hydrothermal water input and possible isotopic exchange with hydrothermal gases are also discerned. Tritium data indicate that hydrothermal waters and other deep groundwaters are likely pre-bomb (before ~1952) in age while most other waters were recharged after ~1990. A boron-based steady-state reservoir model of the Herman Impoundment pit lake indicates that 71–79% of its input is from meteoric water with the remainder from hydrothermal contributions. Results for groundwater samples from six shallow wells over a 6–month period for δD and δ18O suggests that water from Herman Impoundment is diluted another 3% to more than 40% by infiltrating meteoric water, as it leaves the site. Results for this investigation show that environmental tracers are an effective tool to understand the SBMM hydrogeologic regime.

Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Résumé Les concentrations en bore, chlorure, sulfate, δD, δ18O, et 3H d’échantillons d’eaux de surface et souterraine prélevés dans le banc de soufre de la mine de mercure (SBMM en anglais) en Californie, USA, ont été utilisées pour étudier les processus géochimiques et pour fournir des contraintes à l’évaporation et à l’écoulement des eaux souterraines. La SBMM est une mine de soufre et de mercure abandonnée, adjacente au lac Clear en Californie et sous laquelle se trouve un système hydrothermal.Les résultats des traceurs autres que le tritium (bore, chlorure, sulfate, δD, et δ18O) ont permis d’identifier des contributions de six types d’eaux à SBMM. Des processus tels que l’évaporation, le mélange, l’entrée d’eau hydrothermale et de possibles échanges isotopiques avec des gaz hydrothermaux ont également été identifiés. Les données de tritium montrent que les eaux hydrothermales et d’autres eaux profondes sont probablement d’age antérieure à la bombe (avant ~1952), alors que la plupart des autres eaux sont issues de la recharge après ~1990. Un modèle de réservoir représentant le lac situé dans la partie Herman Impoundment de l’ancienne mine, en régime permanent et basé sur le bore, montre que 71–79% de l’eau provient des précipitations, le reste provenant de contributions hydrothermales. Les résultats de δD et δ18O pour des échantillons d’eau souterraine de six puits peu profonds sur une période de 6 mois suggèrent que l’eau de Hermann Impoundment est encore diluée entre 3% jusqu’à plus de 40% lorsqu’elle quitte le site du fait de l’infiltration d’eau météorique. Les résultats de cette étude montrent que les traceurs environnementaux constituent un outil efficace pour comprendre le régime hydrogéologique de la SBMM.

Resumen Se han utilizado datos de concentraciones de boro, cloruros, sulfatos, δD, δ18O, y 3H en muestras de aguas superficiales y subterráneas procedentes de la Mina de Mercurio Sulphur Bank (SBMM), California, USA, para estudiar los procesos geoquímicos y caracterizar la evaporación y el flujo del agua subterránea. SBMM es una mina abandonada de azufre y mercurio con un sistema hidrotermal subyacente, cercano al Lago Clear, California.Los resultados de los trazadores que no son 3H (por ejemplo, boro, cloruros, sulfatos δD, y δ18O) identifican las contribuciones de seis tipos de agua en la SBMM. Se han identificado diversos procesos, como evaporación, mezcla, entrada de agua hidrotermal y la posibilidad de intercambios isotópicos con gases hidrotermales. Los datos de tritio indican que las aguas hidrotermales y otras aguas subterráneas profundas son probablemente pre-bombas (previas a ~1952) en edad mientras que la mayoría de las otras aguas se han recargado después de ~1990. Un modelo estacionario basado en el boro de la fosa del lago Herman Impoundment indica que el 71–79% de su entrada procede de agua meteórica con restos de contribución hidrotermal. Los resultados para las muestras de aguas subterráneas procedentes de seis pozos superficiales en un periodo de 6 meses para δD y δ18O sugieren que el agua procedente de Herman Impoundment se diluye en otro 3% hasta más del 40% debido a la infiltración de agua meteórica., que sale del sitio. Los resultados de esta investigación muestran que los trazadores ambientales son una herramienta efectiva para entender el régimen hidrogeológico de la SBMM.
  相似文献   

9.
Stable isotope ratios of oxygen (δ18O) and carbon (δ13C) in tests ofGloborotalia menardii from samples at 25 cm intervals of top 900 cm cores, representing different thicknesses of the Pleistocene, from DSDP Sites 219, 220 and 241 in the northern Indian Ocean have been measured. Based on the δ18O stratigraphy, glacial and interglacial phases during the Pleistocene have been recognized, which are in good agreement with the standard Quaternary planktonic foraminiferal/climatic zones i.e., Ericson zones at these sites, based onG. menardii abundances. The GIA (glacial interglacial amplitude) at Sites 241, 219 and 220 are of the order of 1·2, 1·4 and 1·9‰ respectively. The last glacial and interglacial maxima (18 ka BP and 125 ka BP respectively) could be identified in DSDP Cores 241, and 219 with some precision. ‘Isotopic ages’ could be assigned to the different levels of these core sections based on the correlation of δ18O record from these sites with the SPECMAP record (Imbrieet al 1984). Changes in sediment accumulation rates at different levels of the Pleistocene have been worked out on the basis of changes in oxygen isotopic ratio. Oscillations in δ13C stratigraphy at Site 241 indicated southwest monsoon induced increase in upwelling and productivity during warmer periods. At Sites 219 and 220, variations in the δ13C record were due to the mixing of bottom water.  相似文献   

10.
We present a high-resolution terrestrial archive of Central American rainfall over the period 100–24 and 8.1–6.5 ka, based on δ18O time series from U-series dated stalagmites collected from a cave on the Pacific Coast of Costa Rica. Our results indicate substantial δ18O variability on millennial to orbital time scales that is interpreted to reflect rainfall variations over the cave site. Correlations with other paleoclimate proxy records suggest that the rainfall variations are forced by sea surface temperatures (SST) in the Atlantic and Pacific Oceans in a fashion analogous to the modern climate cycle. Higher rainfall is associated with periods of a warm tropical North Atlantic Ocean and large SST gradients between the Atlantic and Pacific Oceans. Rainfall variability is likely linked to the intensity and/or latitudinal position of the intertropical convergence zone (ITCZ). Periods of higher rainfall in Costa Rica are also associated with an enhanced sea surface salinity gradient on either side of the isthmus, suggesting greater freshwater export from the Atlantic Basin when the ITCZ is stronger and/or in a more northerly position. Further, wet periods in Central America coincide with high deuterium excess values in Greenland ice, suggesting a direct link between low latitude SSTs, tropical rainfall, and moisture delivery to Greenland. Our results indicate that a stronger tropical hydrological cycle during warm periods and large inter-ocean SST gradients enhanced the delivery of low latitude moisture to Greenland.  相似文献   

11.
对雷州半岛西南部珊瑚岸礁区1995~1997年生长的造礁珊瑚Poriteslutea的骨骼密度、生长速度和δ18O分析表明:1)造礁珊瑚骨骼的密度、生长速度和δ18O与其生存环境的表层海水温度之间存在很好的相关性,高密度、低生长速率和高δ18O值对应于冬季;2)δ18O具有明显的年际和季节性变化。根据δ18O估计的表层海水温度变化范围与实测基本一致,进一步揭示了珊瑚骨骼δ18O可作为定量研究高分辨率表层海水温度变化的温度计。  相似文献   

12.
Mid-Holocene age fossil-fringing reefs occur along the tectonically stable north coast of Java, Indonesia, presenting an opportunity for sea level and paleoclimate reconstruction. The fossil reef at Point Teluk Awur, near Jepara, Central Java, contains two directly superposed horizons of Porites lobata microatolls. Corals in the lower horizon, 80 cm above modern sea level, yielded Uranium series dates of 7090 ± 90 year BP, while corals in the upper horizon at 1.5 m grew at 6960 ± 60 year BP. These dates match the transgressive phase of regional sea-level curves, but suggest a mid-Holocene highstand somewhat older than that recorded on mid-Pacific islands. Paleotemperature was calibrated using Sr/Ca and δ18O values of a modern P. lobata coral and the locally measured sea surface temperature (SST), yielding SST–Sr/Ca and SST–δ18O calibration equations [T Sr/Ca = 91.03–7.35(Sr/Ca) and Td18 \textO T_{{\delta^{18} {\text{O}}}}  = −3.77 to −5.52(δ18O)]. The application of the local equations to Sr/Ca and δ18O measurements on these corals yielded a range of temperatures of 28.8 ± 1.7°C, comparable to that of the modern Java Sea (28.4 ± 0.7°C). A paleo-salinometer [Δδ18O = ∂δ18O/∂T ( Td18 \textO T_{{\delta^{18} {\text{O}}}}  − T Sr/Ca)], re-calculated using the local parameters, also suggests Java Sea mid-Holocene paleosalinity similar to modern values.  相似文献   

13.
We have used correlative analysis between mean December-January-February winter wind velocities, measured at the Xisha Meteorological Observatory (16°50′N, 112°20′E) in the middle of the South China Sea, and mean δ18O data for the corresponding month from Porites lutea coral, collected in Longwan waters (19°20′N, 110°39′E), to obtain a linear equation relating the two datasets. This winter wind velocity for the South China Sea (WMIIscs) can then be correlated to the coral δ18O by the equation WMIIscs = −1.213-1.351 δ18O (‰ PDB), r = −0.60, n = 40, P = 0.01. From this, the calculated WMIIscs-δ18O series from 1944 to 1997 tends to decrease during the 1940s to the 1960s; it increases slightly during the 1970s and then decreases again in the 1980s and 1990s. The calculated decadal mean WMIIscs-δ18O series had a obvious decrease from 5.92 to 4.63 m/s during the period of 1944-1997. The calculated yearly mean WMIIscs-δ18O value is 5.58 m/s from 1944 to 1976 and this decreases to 4.85 m/s from 1977 to 1998. That is the opposite trend to the observed yearly mean SST variation. The yearly mean SST anomaly is −0.27° from 1943 to 1976 and this increases to +0.16° from 1977 to 1998. Spectral analysis used on a 54-year-long calculated WMIIscs-δ18O series produces spectral peaks at 2.4-7 yr, which can be closely correlated with the quasibiennial oscillation band (QBO band, 2-2.4 yr) and the El Ñino southern oscillation band (ENSO band, 3-8 yr). Hence most of the variability of the winter monsoon intensity in the middle of the South China Sea is mainly constrained by changes in the thermal difference between the land and the adjoining sea area, perhaps due to global warming.  相似文献   

14.
Stable isotopes of H2O are used to define the hyporheic–hypolentic boundary in Ledbetter Creek as it discharges to Kentucky Lake, a constructed reservoir in western Kentucky, USA. High-resolution (centimeter-scale) sample collection and analysis were utilized to determine one-dimensional variations in δ2H and δ18O of H2O and chloride (Cl) across the boundary. During reservoir low stand in winter, the hyporheic–hypolentic zone contains water from Ledbetter Creek and groundwater separated by an interface at ~10 cm below the channel bottom. Following reservoir-stage increase in spring and summer, water from Kentucky Lake infiltrates into the hyporheic–hypolentic zone to a depth of at least 18 cm below the channel bottom. Reservoir-stage decline in autumn causes source-water mixing, largely obscuring the hyporheic–hypolentic boundary. Stable isotopes provide an effective complement to conventional tracers for delineation of water masses within the hyporheic–hypolentic zone.
Resumen Se han utilizado isótopos estables del agua para definir el límite hiporreico-hipoléntico en Ledbetter Creek, que constituye una zona de descarga del lago Kentucky, una presa construida al Oeste de Kentucky, USA. Se ha llevado a cabo una recogida de muestras de alta resolución (a escala centimétrica) y se utilizaron los resultados para determinar las variaciones unidimensionales en δ2H y δ18O del H2O y los cloruros (Cl) alrededor del límite. Durante la época de niveles bajos en invierno, la zona hiporreica-hipolentica tiene agua procedente de Ledbetter Creek y de agua subterránea separada por una interfase de ~10 cm debajo del límite del canal. Siguiendo el incremento de los niveles en la presa en primavera y verano, el agua del Lago Kentucky se infiltra en la zona hiporreica-hipoléntica hasta una profundidad de, al menos, 18 cm bajo el límite hiporreico-hipoléntico. Los isótopos estables aportan un complemento efectivo a los trazadores convencionales para la delimitación de masas de agua dentro de la zona hiporreica-hipoléntica.

Résumé L’utilisation des isotopes stables de la molécule d’eau a permis de définir l’interface hyporhéique-hypolentique dans la Ledbetter Creek, au point de déversement dans le réservoir artificiel que constitue le Kentucky Lake (Ouest du Kentucky, Etats-Unis). Une campagne de prélèvements à haute résolution (échelle centimétrique) a contribué à déterminer les variations unidimensionnelles des valeurs de δ2H et de δ18O de la molécule d’eau et de la concentration en chlorures (Cl) de part et d’autre de l’interface. En hiver, lorsque le niveau du réservoir est minimal, la zone hyporhéique-hypolentique contient de l’eau de la Ledbetter Creek et de l’eau souterraine, séparées par un interface situé environ 10 cm sous le fond du chenal. Suite aux recharges printanières et estivales, l’eau du Kentucky Lake envahit la zone hyporhéique-hypolentique sur plus de 18 cm sous le fond du chenal. En automne, la baisse de niveau dans le réservoir occasionne un mélange des eaux, rendant diffus l’interface hyporhéique-hypolentique. Les isotopes stables constituent ainsi un complément efficace aux traceurs conventionnels pour la délimitation des masses d’eau dans la zone hyporhéique-hypolentique.
  相似文献   

15.
Multiple origins of zircons in jadeitite   总被引:1,自引:1,他引:0  
Jadeitites form from hydrothermal fluids during high pressure metamorphism in subduction environments; however, the origin of zircons in jadeitite is uncertain. We report ion microprobe analyses of δ18O and Ti in zircons, and bulk δ18O data for the jadeitite whole-rock from four terranes: Osayama serpentinite mélange, Japan; Syros mélange, Greece; the Motagua Fault zone, Guatemala; and the Franciscan Complex, California. In the Osayama jadeitite, two texturally contrasting groups of zircons are identified by cathodoluminescence and are distinct in δ18O: featureless or weakly zoned zircons with δ18O = 3.8 ± 0.6‰ (2 SD, VSMOW), and zircons with oscillatory or patchy zoning with higher δ18O = 5.0 ± 0.4‰. Zircons in phengite jadeitite from Guatemala and a jadeitite block from Syros have similar δ18O values to the latter from Osayama: Guatemala zircons are 4.8 ± 0.7‰, and the Syros zircons are 5.2 ± 0.5‰ in jadeitite and 5.2 ± 0.4‰ in associated omphacitite, glaucophanite and chlorite-actinolite rinds. The δ18O values for most zircons above fall within the range measured by ion microprobe in igneous zircons from oxide gabbros and plagiogranites in modern ocean crust (5.3 ± 0.8‰) and measured in bulk by laser fluorination of zircons in equilibrium with primitive magma compositions or the mantle (5.3 ± 0.6‰). Titanium concentrations in these zircons vary between 1 and 19 ppm, within the range for igneous zircons worldwide. Values of δ18O (whole-rock) ≅ δ18O (jadeite) and vary from 6.3 to 10.1‰ in jadeitites in all four areas.  相似文献   

16.
The mid-to-late Pleistocene Devils Hole δ18O record has been extended from 60,000 to 4500 yr ago. The new δ18O time series, in conjunction with the one previously published, is shown to be a proxy of Pacific Ocean sea surface temperature (SST) off the coast of California. During marine oxygen isotope stages (MIS) 2 and 6, the Devil Hole and SST time series exhibit a steady warming that began 5000 to > 10,000 yr prior to the last and penultimate deglaciations. Several possible proximate causes for this early warming are evaluated. The magnitude of the peak δ18O or SST during the last interglacial (LIG) is significantly greater (1 per mill and 2 to 3°C, respectively) than the peak value of these parameters for the Holocene; in contrast, benthic δ18O records of ice volume show only a few tenths per mill difference in the peak value for these interglacials. Statistical analysis provides an estimate of the large shared information (variation) between the Devils Hole and Eastern Pacific SST time series from ∼ 41 to ∼ 2°N and enforces the concept of a common forcing among all of these records. The extended Devils Hole record adds to evidence of the importance of uplands bordering the eastern Pacific as a source of archives for reconstructing Pacific climate variability.  相似文献   

17.
Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) report laser-assisted fluorination (LF) and secondary ionization mass spectrometry (SIMS) 18O/16O datasets for olivine grains from the Canary Islands of Gran Canaria, Tenerife, La Gomera, La Palma and El Hierro. As with prior studies of oxygen isotopes in Canary Island lavas (e.g. Thirlwall et al. Chem Geol 135:233–262, 1997; Day et al. Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010), these authors find variations in δ18Ool (~4.6–6.0 ‰) beyond that measured for mantle peridotite olivine (Mattey et al. Earth Planet Sci Lett 128:231–241, 1994) and interpret this variation to reflect contributions from pyroxenite-peridotite mantle sources. Furthermore, Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) speculate that δ18Ool values for La Palma olivine grains measured by LF (Day et al. Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010) may be biased to low values due to the presence of altered silicate, possibly serpentine. The range in δ18Ool values for Canary Island lavas are of importance for constraining their origin. Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) took a subset (39 SIMS analyses from 13 grains from a single El Hierro lava; EH4) of a more extensive dataset (321 SIMS analyses from 110 grains from 16 Canary Island lavas) to suggest that δ18Ool is weakly correlated (R 2 = 0.291) with the parameter used by Gurenko et al. (Earth Planet Sci Lett 277:514–524, 2009) to describe the estimated weight fraction of pyroxenite-derived melt (Xpx). With this relationship, end-member δ18O values for HIMU-peridotite (δ18O = 5.3 ± 0.3 ‰) and depleted pyroxenite (δ18O = 5.9 ± 0.3 ‰) were defined. Although the model proposed by Gurenko et al. (Contrib Mineral Petrol 162:349–363, 2011) implicates similar pyroxenite-peridotite mantle sources to those proposed by Day et al. (Geology 37:555–558, 2009, Geochim Cosmochim Acta 74:6565–6589, 2010) and Day and Hilton (Earth Planet Sci Lett 305:226–234, 2011), there are significant differences in the predicted δ18O values of end member components in the two models. In particular, Day et al. (Geochim Cosmochim Acta 74:6565–6589, 2010) proposed a mantle source for La Palma lavas with low-δ18O (<5 ‰), rather than higher-δ18O (c.f. the HIMU-peridotite composition of Gurenko et al. in Contrib Mineral Petrol 162:349–363, 2011). Here we question the approach of using weakly correlated variations in δ18Ool and the Xpx parameter to define mantle source oxygen isotope compositions, and provide examples of why this approach appears flawed. We also provide reasons why the LF datasets previously published for Canary Island lavas remain robust and discuss why LF and SIMS data may provide complementary information on oxygen isotope variations in ocean island basalts (OIB), despite unresolved small-scale uncertainties associated with both techniques.  相似文献   

18.
1IntroductionSoilorganicmatter (SOM)isakeysourceofnutrientsforplantgrowth ,itisessentialforthemaintenanceofsoilstructureanditcontributestotheabilityofsoiltoretainnutrientsandwater.AnimprovedunderstandingofSOMdynamicsiscentraltothedevelopmentofmoreenvironmentallysoundandsustainablepracticesofagriculturalmanagement (Collinsetal.,2 0 0 0 ) .Avarietyofcon ceptualmethodshavebeenusedtodescribetheprocessesofSOMaccumulationandturnover (Jen kinsonandRayner,1 977;Duxburyetal.1 989;Partonetal.,1 99…  相似文献   

19.
Summary N and O isotope systematics of a suite of high-pressure (HP) and ultrahigh-pressure (UHP) metasediments of the Schistes Lustrés nappe and metaperidotites of the Erro Tobbio Massif from the Alpine-Appennine system are compared with their unmetamorphosed or hydrothermally-altered equivalent from the same localities and from the South West Indian Ridge (SWIR). The HP and UHP rocks studied represent a sequence of pelagic sediments and altered ultramafic rocks subducted to different depths of down to 90 km along a cold geothermal gradient (8 °C/km). Unmetamorphosed and HP metasediments show the same range in δ15N values irrespective of their metamorphic grade and bulk nitrogen concentrations. Together with several other geochemical features (K, Rb and Cs contents, δD), this indicates that δ15N values were unaffected by metamorphism and N was not released during subduction. N isotope analysis of serpentinites coupled with δ18O systematics suggests the involvement of a mafic (crustal) component during partial deserpentinization of the subducted oceanic mantle at the depth locus of island arc magmatism. This does not imply large-scale fluxes as the metagabbros are spatially associated with the analyzed serpentinites. It rather indicates preservation of presubduction chemical and isotopic heterogeneities on a local scale as documented for the metasediments.  相似文献   

20.
Lower ocean crust is primarily gabbroic, although 1–2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater–rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform δ18O with an average value of 5.2 ± 0.5‰ (2SD). The average δ18O(Zrc) would be in magmatic equilibrium with unaltered MORB [δ18O(WR) ~ 5.6–5.7‰], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured δ18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like δ18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water–rock interactions that alter the protolith δ18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal environments. Many of the >3.9 Ga zircons have mildly elevated δ18O (6.0–7.5‰), but such values have not been identified in any zircons from the large sample suite examined here. The difference in δ18O, in combination with newly acquired lithium concentrations and published trace element data, clearly shows that the >3.9 Ga detrital zircons did not originate by processes analogous to those in modern mid-ocean ridge settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号