共查询到20条相似文献,搜索用时 15 毫秒
1.
Ross P. Church Johann Dischler Melvyn B. Davies Christopher. A. Tout Tim Adams Martin E. Beer 《Monthly notices of the Royal Astronomical Society》2009,395(2):1127-1134
To measure the onset of mass transfer in eccentric binaries, we have developed a two-phase smoothed particle hydrodynamics (SPH) technique. Mass transfer is important in the evolution of close binaries, and a key issue is to determine the separation at which mass transfer begins. The circular case is well understood and can be treated through the use of the Roche formalism. To treat the eccentric case, we use a newly developed two-phase system. The body of the donor star is made up from high-mass water particles, whilst the atmosphere is modelled with low-mass oil particles. Both sets of particles take part fully in SPH interactions. To test the technique, we model circular mass-transfer binaries containing a 0.6 M⊙ donor star and a 1 M⊙ white dwarf; such binaries are thought to form cataclysmic variable (CV) systems. We find that we can reproduce a reasonable CV mass-transfer rate, and that our extended atmosphere gives a separation that is too large by approximately 16 per cent, although its pressure scale height is considerably exaggerated. We use the technique to measure the semimajor axis required for the onset of mass transfer in binaries with a mass ratio of q = 0.6 and a range of eccentricities. Comparing to the value obtained by considering the instantaneous Roche lobe at pericentre, we find that the radius of the star required for mass transfer to begin decreases systematically with increasing eccentricity. 相似文献
2.
H. Ritter 《Monthly notices of the Royal Astronomical Society》1999,309(2):360-372
We derive a simple analytical solution for the evolution of a close binary with nuclear time-scale driven mass transfer from a giant. This solution is based on the well-known fact that the luminosity and the radius of a giant scale to a good approximation as simple power laws of the mass M c of the degenerate helium core. Comparison with results of numerical calculations by Webbink, Rappaport & Savonije show the analytical solution and the power-law approximation to be quite accurate. The analytical solution presented does also allow (in parametrized form) for non-conservative mass transfer. Furthermore, it is shown that the near constancy of the mass-transfer rate over most of the mass-transfer phase seen in the results by Webbink, Rappaport & Savonije is not a generic feature of this type of evolution but rather a consequence of a particular choice of parameters. The analytical solution also demonstrates that the level of mass transfer is largely set by the core mass of the giant at the onset of mass transfer. Finally, we show that the model is self-consistent and discuss its applicability to low-mass X-ray binaries. 相似文献
3.
T. M. Lawlor T. R. Young T. A. Johnson J. MacDonald 《Monthly notices of the Royal Astronomical Society》2008,384(4):1533-1543
We present stellar evolution calculations for Population III stars for both single- and binary-star evolutions. Our models include 10- and 16.5-M⊙ single stars and a 10-M⊙ model star that undergoes an episode of accretion resulting in a final mass of 16.1 M⊙ . For comparison, we present the evolution of a solar heavy element abundance model. We use the structure from late-stage evolution models to calculate simulated supernova light curves. Light curve comparisons are made between accretion and non-accretion progenitor models, and models for single-star evolution of comparable masses. Where possible, we make comparisons to previous works. Similar investigations have been carried out, but primarily for solar or near-solar heavy metal abundance stars and not including both the evolution and the supernova explosions in one work. 相似文献
4.
A. V. Myasnikov & S. A. Zhekov 《Monthly notices of the Royal Astronomical Society》1998,300(3):686-694
The influence of electron thermal conduction on the 2D gas dynamics of colliding stellar winds is investigated. It is shown that, as a result of the non-linear dependence of the electron thermal flux on the temperature, the pre-heating zones (in which the hot gas in the interaction region heats the cool winds in front of the shocks) have finite sizes. The dependence of the problem of the structure of the flow in the interaction region on the dimensionless parameters is studied, and a simple expression is derived for the size of the pre-heating zones at the axis of symmetry. It is shown that small values of the thermal conductivity do not suppress the Kelvin–Helmholtz instability if the adiabatic flow is subject to it. Further studies, both numerical and analytical, in this direction will be of great interest. The influence of thermal conduction on the X-ray emission from the interaction region is also estimated. 相似文献
5.
6.
O. Demircan Z. Eker Y. Karata S. Bilir 《Monthly notices of the Royal Astronomical Society》2006,366(4):1511-1519
The secular evolution of the orbital angular momentum (OAM), the systemic mass ( M = M 1 + M 2 ) and the orbital period of 114 chromospherically active binaries (CABs) were investigated after determining the kinematical ages of the subsamples which were set according to OAM bins. OAMs, systemic masses and orbital periods were shown to be decreasing by the kinematical ages. The first-order decreasing rates of OAM, systemic mass and orbital period have been determined as per systemic OAM, per systemic mass and per orbital period, respectively, from the kinematical ages. The ratio of d log J /d log M = 2.68, which were derived from the kinematics of the present sample, implies that there must be a mechanism which amplifies the angular momentum loss (AML) times in comparison to isotropic AML of hypothetical isotropic wind from the components. It has been shown that simple isotropic mass loss from the surface of a component or both components would increase the orbital period. 相似文献
7.
8.
Run-Qian Huang Han-Feng Song Shao-Lan Bi National Astronomical Observatories/Yunnan Observatory Chinese Academy of Sciences Kunming Graduate University of Chinese Academy of Sciences Beijing 《中国天文和天体物理学报》2007,7(2):235-244
Three importantphysical processes occurringin contact binarysystems are studied. The first one is the effect of spin, orbital rotation and tide on the structure of the components, which includes also the effect of meridian circulation on the mixing of the chemical elements in the components. The second one is the mass and energy exchange between the components. To describe the energy exchange, a new approach is introduced based on the understanding that the exchange is due to the release of the potential, kinetic and thermal energy of the exchanged mass. The third is the loss of mass and angular momentum through the outer Lagrangian point. The rate of mass loss and the angular momentum carried away by the lost mass are discussed. To show the effects of these processes, we follow the evolution of a binary system consisting of a 12M and a 5M star with mass exchange between the components and mass loss via the outer Lagrangian point, both with and without considering the effects of rotation and tide. The result shows that the effect of rotation and tide advances the start of the semi-detached and the contact phases, and delays the end of the hydrogen-burning phase of the primary. Furthermore, it can change not only the occurrence of mass and angular momentum loss via the outer Lagrangian point, but also the contact or semi-contact status of the system. Thus, this effect can result in the special phenomenon of short-term variations occurring over a slow increase of the orbital period. The occurrence of mass and angular momentum loss via the outer Lagrangian point can affect the orbital period of the system significantly, but this process can be influenced, even suppressed out by the effect of rotation and tide. The mass and energy exchange occurs in the common envelope. The net result of the mass exchange process is a mass transfer from the primary to the secondary during the whole contact phase. 相似文献
9.
10.
11.
12.
13.
A. A. Gatti J. E. Drew R. D. Oudmaijer T. R. Marsh & A. E. Lynas-Gray 《Monthly notices of the Royal Astronomical Society》1998,301(2):33L-37L
Using the Planetary Camera on board the Hubble Space Telescope , we have measured the projected separation of the binary components in the nucleus of the planetary nebula Abell 35 to be larger than 0.08 arcsec but less than 0.14 arcsec. The system has been imaged in three filters centred at 2950, 3350 and 5785 Å. The white dwarf primary star responsible for ionizing the nebula is half as bright as its companion in the 2950-Å filter, causing the source to be visibly elongated. The 3350-Å setting, on the other hand, shows no elongation as a result of the more extreme flux ratio. The F300W data allow the determinination of the projected separation of the binary. At the minimum distance of 160 pc to the system, our result corresponds to 18 ± 5 au. This outcome is consistent with the wind accretion induced rapid rotation hypothesis, but cannot be reconciled with the binary having emerged from a common-envelope phase. 相似文献
14.
15.
We present a three-dimensional (3D) dynamical model of the orbital-induced curvature of the wind–wind collision region in binary star systems. Momentum balance equations are used to determine the position and shape of the contact discontinuity between the stars, while further downstream the gas is assumed to behave ballistically. An Archimedean spiral structure is formed by the motion of the stars, with clear resemblance to high-resolution images of the so-called 'pinwheel nebulae'. A key advantage of this approach over grid or smoothed particle hydrodynamic models is its significantly reduced computational cost, while it also allows the study of the structure obtained in an eccentric orbit. The model is relevant to symbiotic systems and γ-ray binaries, as well as systems with O-type and Wolf–Rayet stars.
As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray. 相似文献
As an example application, we simulate the X-ray emission from hypothetical O+O and WR+O star binaries, and describe a method of ray tracing through the 3D spiral structure to account for absorption by the circumstellar material in the system. Such calculations may be easily adapted to study observations at wavelengths ranging from the radio to γ-ray. 相似文献
16.
17.
18.
Sergey V. Marchenko Gregor Rauw Eleonora A. Antokhina Igor I. Antokhin Dominique Ballereau Jacques Chauville Michael F. Corcoran Rafael Costero Juan Echevarria Thomas Eversberg Ken G. Gayley Gloria Koenigsberger Anatoly S. Miroshnichenko Anthony F. J. Moffat Nidia I. Morrell Nancy D. Morrison Christopher L. Mulliss Julian M. Pittard Ian R. Stevens Jean-Marie Vreux Jean Zorec 《Monthly notices of the Royal Astronomical Society》2000,317(2):333-342
With the objective of investigating the windwind collision phenomenon and supporting contemporaneous X-ray observations, we have organized a large-scale, coordinated optical monitoring campaign of the massive, highly eccentric O9 III+B1 III binary Iota Orionis. Successfully separating the spectra of the components, we refine the orbital elements and confirm the rapid apsidal motion in the system. We also see strong interaction between the components during periastron passage and detect phase-locked variability in the spectrum of the secondary star. However, we find no unambiguous signs of the bow shock crashing on the surface of the secondary, despite the predictions of hydrodynamic simulations. Combining all available photometric data, we find rapid, phase-locked variations and model them numerically, thus restricting the orbital inclination to 50° i 70°. 相似文献
19.