首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Faez Bakalian 《Icarus》2006,183(1):69-78
The energy and altitude distributions for nitrogen atoms produced from photodissociation of N2 and dissociative recombination of N+2 have been computed for the low and high solar activity martian thermospheres. We find that the fraction of nitrogen atoms with E>Eesc at the exobase is ∼2.5% for photodissociation as compared to ∼22.6% for dissociative recombination. However, the peak magnitudes of the production rate profiles for dissociative recombination are a factor of ∼1000 and ∼200 times smaller than those of photodissociation at low and high solar activities, respectively. Thus, our findings suggest that photodissociation of N2 is the dominant escape mechanism for atomic nitrogen for both the low and high solar activity martian thermospheres. The general consensus in the field prior to these research results was that dissociative recombination of N+2 was the main escape mechanism. We find that it is the dissociation of N2 along repulsive states that results in the production of very energetic nitrogen atoms.  相似文献   

3.
Hydrogen atoms in Keplerian orbits about a planet are dynamically perturbed by solar Ly α radiation. These perturbations are examined here by analyzing the rates of change of the classical orbital elements, with rather different conclusions from those drawn by Bertaux and Blamont (1973) from numerical integration of sample orbits. There are three main effects: high inclination orbits with eccentricities e ? 0.4 are forced toward the ecliptic plane within a few weeks; the perigees of direct [or retrograde] orbits drift rapidly (i.e., in a few days) toward stable positions roughly westward [or eastward] of the planet; satellite orbits in or near such a stable point rapidly lower their perigees and the satellite's life is ended by a collision in the atmosphere. Thus there are effects tending to diminish the number of highly eccentric orbits with distant apogees in all six principal directions (N, S; Sun, anti-Sun; E, W). The various lifetimes are compared for a sample of initial elements.  相似文献   

4.
Measurements of N2+ and supporting data made on the Atmosphere Explorer-C satellite in the ionosphere are used to study the charge exchange process
O+(2D)+N2kN+2+O
The equality k = (5 ± 1.7) × 10?10cm3s?1. This value lies close to the lower limit of experimental uncertainty of the rate coefficient determined in the laboratory. We have also investigated atomic oxygen quenching of O+(2D) and find that the rate coefficient is 2 × 10?11 cm3s?1 to within approximately a factor of two.  相似文献   

5.
Treating it as a boundary-value problem, the equations of highly excited state populations of atoms and ions are theoretically studied in case of recombining plasma. Scattering and spontaneous transitions as well as those induced by background radiation, are taken into account in the kinetic equations. The kinetic coefficients for inelastic scattering of incident charged particles on highly excited atoms and ions have been calculated in the asymptotically exact case: 1.6×105 (z/n)2)T e –1 1.The distribution functions over the Rydberg states, analytically found, allow to determine amplification factor and optical depth of radio-recombination lines as functions of cosmic plasma parameters.  相似文献   

6.
The Monte-Carlo method has been used to simulate Auger cascades in atoms and ions of Mg, Al, Si, S, Ar, Ca, Fe with account for the radiative and Auger transitions. The probabilities of ejection of various numbers of electrons after the initial creation of vacancy in different shells have been calculated. Corresponding probabilities for atoms and ions of C, N, O, Ne (where single Auger transitions are possible) are presented. The data on radiative and Auger transition rates available in the literature for all the above-mentioned atoms and ions are collected and discussed.  相似文献   

7.
This Letter reviews the results by computer simulations on the three-body problem carried out at Leningrad University Astronomical Observatory (Anosova, 1986, 1988, 1989). The intensive systematic studies of triple systems with negative and positive total energies have yielded the general features of the evolution of these systems. The processes of formation of the wide and hard binaries have been studied in details. The scenario of the general class of the final motions of the triple systems with negative total energy is considered, the necessary conditions of disruption of these systems are formulated.  相似文献   

8.
9.
We imaged Mercury in sodium D1 and D2 emission for 6 days during the period 13–20 November 1997 using a 10×10-arc s aperture image slicer coupled to a high-resolution spectrograph. We corrected the sodium images for smearing by the terrestrial atmosphere by computing the actual seeing function from surface reflection images, and used this function to correct the sodium images. During the period of observation, large daily changes took place in both the total amount of sodium and its distribution over the planet. Total sodium increased by a factor of about 3 during this period. The sodium emission was brightest at longitudes near the subsolar longitude in the range 130–150°, with excess sodium at northern latitudes on some days, and excess sodium at southern latitudes on other days. There are no obviously outstanding geologic features at this longitude. The rapid changes observed during this period suggest a connection with solar activity, since the planet itself is apparently geologically inactive. The F10.7 cm solar flux during this period varied only slightly, with an increase of about 15%, probably insufficient to account for the observed changes. However, there were a number of coronal mass ejection (CME) events, some of which were directed towards the general area of Mercury. We suggest that the changes in the visible neutral sodium atmosphere might be a result of the effect of CMEs on Mercury.  相似文献   

10.
Very large short lived enhancements observed in Na nightglow measurements are described. Only nine such events have been observed in about 8 years of regular nocturnal observations at 23°S. These enhancements are believed to be due to excess sodium deposited in the upper atmosphere by meteoroid ablation. The cases observed are not always correlated with known meteor showers, except perhaps in June with χ Scorpiids and θ Ophiuchids.  相似文献   

11.
The photodissociation of oxygen in the lower thermosphere is evaluated to obtain its global average value and the hemispheric imbalance. The observed concentrations of atomic oxygen do not reflect this imbalance in production due to the effect of seasonal wind patterns redistributing the atomic oxygen. The wind system necessary to compensate for the imbalance in solar thermal input into the lower thermosphere is found to transport an amount of atomic oxygen sufficient to compensate for the hemispheric imbalance in production. Ionospheric data indicate a winter enhancement in atomic oxygen concentration; to produce this, a higher degree of oxygen dissociation than that normally accepted (i.e. higher than an atomic to molecular oxygen ratio of unity at 120 km) is needed. The concept that the concentrations of atomic oxygen observed over the winter polar region are maintained by transport from lower latitudes requires that eddy diffusion coefficients derived from vertical transport at low latitudes (ignoring horizontal transport) be reduced by about 25 per cent.  相似文献   

12.
Our knowledge about the lunar environment is based on a large volume of ground-based, remote, and in situ observations. These observations have been conducted at different times and sampled different pieces of such a complex system as the surface-bound exosphere of the Moon. Numerical modeling is the tool that can link results of these separate observations into a single picture. Being validated against previous measurements, models can be used for predictions and interpretation of future observations results.  相似文献   

13.
14.
We present a detailed study of the distribution of key deuterated species (viz., atomic D and HD) and the associated deuterium Lyman-α airglow in the jovian thermosphere. The reactions that appear to govern the abundances of these deuterated species are used in conjunction with C2-chemistry in a 1-D photochemical-diffusion model. While the D abundance is mainly sensitive to H densities and the vibrational temperature profile, the D vertical distribution also depends on other parameters such as eddy mixing and the uncertain values of some of the reaction rate constants. We consider different scenarios by varying several parameters controlling the D distribution in the thermosphere. A radiative transfer model with coupling of the H and D Lyman-α lines is employed to obtain line profiles and total intensities at disk center for these scenarios. This allows a comparison of the impact of various parameters on the jovian D Lyman-α emission. A consequence of these chemical processes in the jovian thermosphere is the formation of CH2D, CH3D, and C2H5D, and other deuterated species. We also discuss the source of these deuterated hydrocarbons and their abundance. We find that HD vibrational chemistry impacts D in the thermosphere, CH3D and C2H5D are vibrationally enhanced in the thermosphere, and variations in abundance of CH3D and C2H5D in the thermosphere may reflect dynamical activity (i.e., Kh) in the jovian upper atmosphere. An observing program dedicated to providing such measurements of these testable phenomena would provide further insight into the synergistic coupling between chemistry, energetics and airglow in the jovian upper atmosphere.  相似文献   

15.
Properties of acoustic-gravity waves in the upper atmosphere of Venus are studied using a two-fluid model which includes the effects of wave-induced diffusion in a diffusively separated atmosphere. In conjunction with neutral mass spectrometer data from the Pioneer Venus orbiter, the theory should provide information on the distribution of wave sources in the Venus upper atmosphere. Observed wave structure in species density measurements should generally have periods ?30–35 min, small N2, CO, and O amplitudes, and highly variable phase shifts relative to CO2. A near resonance may exist between downward phase-propagating internal gravity and diffusion waves near the 165-km level at periods near 29 min. As a result, if very large He wave amplitudes are observed near this level, it will indicate that the wave source is below the 150- to 175-km level and that the exospheric temperature is close to 350°K. Wave energy dissipation may be an important mechanism for heating of the nightside Venus thermosphere. Large-density oscillations in stratospheric cloud layer constituents are also possible and may be detectable by the Pioneer Venus large probe neutral mass spectrometer.  相似文献   

16.
The theory of dissipation of ionospheric electric currents is extended to include viscosity. In a steady state (i.e. usually above about 140 km altitude) the joule plus viscous heating may be calculated by μ∇2v. E × B/B2. At lower altitudes where viscosity may, in some circumstances, be relatively unimportant the joule dissipation is calculated by the usual formula j. (E + v × B). In a prevalent model of the auroral electrojets it is found that the joule heating can be much more intense outside auroral forms than within them. Heating due to auroral electrojets cause a semi-annual variation in the thermosphere. Movement caused by auroral electric fields make a contribution to the super-rotation of the midlatitude upper atmosphere. Random electric fields lead to an eddy ‘viscosity’ or ‘exchange coefficientrs in the upper thermosphere of magnitude ρER2/B3tR2|∇E|. where tR is the correlation time of the random component of electric fields ER and ρ is air density. Theoretical conditions for significant heating by field-aligned currents are derived.  相似文献   

17.
In the Earth's lower thermosphere and mesosphere, water vapor is photodissociated by absorption of Lyman alpha radiation. The hydrogen containing free radicals produced by this process lead to the formation of molecular hydrogen. Therefore, very small water vapor mixing ratios are expected at high altitudes, particularly in summer, when photolysis is especially rapid. We present one and two-dimensional model calculations regarding the distribution of H2O and H2 in the upper atmosphere.The ion chemistry of meteor ions in the lower thermosphere is also examined and it is shown that silicon ion densities can be used to infer water vapor concentrations near 100 km. The water vapor mixing ratios obtained are generally well below one part per million and are in good agreement with the model calculations.  相似文献   

18.
19.
From experimental data concerning thermal solar tides, we show that they account for the average diurnal variations of the 557.7 nm atomic oxygen nightglow intensity at 100 km altitude for different latitudes. We point out that this result can be applied to the average diurnal variation of emissions of other constituents such as Na, OH, O2.  相似文献   

20.
The exosphere of an atmosphereless icy moon is the result of different surface release processes and subsequent modification of the released particles. At Europa icy moon, water molecules are directly released, but photolysis and radiolysis due to solar UV and Jupiter’s magnetospheric plasma, respectively, can result in OH, H, O and (possibly) H2 production. These molecules can recombine to reform water and/or new chemical species. As a consequence, Europa’s neutral environment becomes a mixture of different molecules, among which, H2O dominates in the highest altitudes and O2, formed mainly by radiolysis of ice and subsequent release of the produced molecules, prevails at lower altitudes. In this work, starting from a previously developed Monte Carlo model for the generation of Europa’s exosphere, where the only considered species was water, we make a first attempt to simulate also the H2 and O2 components of the neutral environment around Europa, already observed by the Hubble Space Telescope and the Ultraviolet Imaging Spectrograph on board Cassini, during its flyby of Jupiter. Considering a specific configuration where the leading hemisphere coincides with the sunlit hemisphere, we estimate along the Europa–Sun line an O2 column density of about 1.5 × 1019 m?2 at the dayside and 3 × 1018 m?2 at the nightside. In this work we also improve our previous estimation of the sputtered H2O exosphere of this moon, taking into consideration the trailing–leading asymmetry in the magnetospheric ion bombardment and the energy and temperature dependences of the process yields. We find that a density of 1.5 × 1012 H2O/m3 is expected at altitudes ~0.1RE above the surface of the trailing hemisphere. Additionally, we calculate the escape of H2O, O2 and H2. The total number of neutral atoms in Europa’s neutral torus, is estimated to be in the range 7.8 × 1032–3.3 × 1033.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号