首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
选用四氯乙烯(PCE)作为典型DNAPL污染物,以NaCl作为地下水中溶解盐代表,研究盐度对DNAPL在饱和多孔介质中运移和分布的影响。通过批次实验测定NaCl水溶液/石英砂/PCE三相体系下的接触角和界面张力,结果表明,PCE在石英砂表面的接触角随着水中NaCl浓度的增大而减小,而PCE和NaCl水溶液的界面张力随着NaCl浓度的增大而增大,尤其当氯化钠浓度较高时(>0.1 mol/L),影响程度更为显著。在此基础上,采用透射光法监测不同介质情景下DNAPL在二维砂箱中的运移和分布,定量测定DNAPL在介质中的饱和度。实验结果表明,地下水盐度的增加将促进DNAPL的垂向入渗,减少被截留在运移路径上的DNAPL量,使得DNAPL运移路径及累积形成的池状DNAPL(pool)向水流方向偏移。在均质多孔介质和含有透镜体的非均质多孔介质中,随着盐度的增加,DNAPL在横向和垂向上的展布均呈现出增加趋势,导致污染源区变大,且介质中以离散状存在的DNAPL量明显增加。  相似文献   

2.
Following the accidental subsurface release of dense nonaqueous phase liquids (DNAPLs), spatial variability of physical and chemical soil/contaminant properties can exert a controlling influence on infiltration pathways and organic entrapment. DNAPL spreading, fingering, and pooling typically result in source zones characterized by irregular contaminated regions with complex boundaries. Spatial variability in aquifer properties also influences subsequent DNAPL dissolution and aqueous transport dynamics. An increasing number of studies have investigated the effects of subsurface heterogeneity on the fate of DNAPL; however, previous work was limited to the examination of the behavior of single-component DNAPL in systems with simple and well-defined aqueous and solid surface chemistry. From a DNAPL remediation point of view, such an idealized assumption will bring a large discrepancy between the designs based on the model simulation and the reality. The research undertaken in this study seeks to stochastically explore the influence of spatially variable porous media on DNAPL entrapment and dissolution profiles in the saturated groundwater aquifer. A 3D, multicomponent, multiphase, compositional model, UTCHEM, was used to simulate natural gradient water flooding processes in spatially variable soils. Porosity was assumed to be uniform or simulated using sequential Gaussian simulation (SGS) and sequential indicator simulation (SIS). Soil permeability was treated as a spatially random variable and modeled independently of porosity, and a geostatistical method was used to generate random distributions of soil permeability using SGS and SIS (derived from measured grain size distribution curves). Equally possible 3D ensembles of aquifer realizations with spatially variable permeability accounting of physical heterogeneity could be generated. Tetrachloroethene (PCE) was selected as a DNAPL representative as it was frequently discovered at many contaminated groundwater sites worldwide, including Thailand. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL source zone architecture under 96-L hypothetical PCE spill in heterogeneous media and stochastic analysis was conducted based on the simulated results. Simulations revealed considerable variations in the predicted PCE source zone architecture with a similar degree of heterogeneity, and complex initial PCE source zone distribution profoundly affected PCE recovery time in heterogeneous media when subject to natural gradient water flush. The necessary time to lower PCE concentrations below Thai groundwater quality standard ranged from 39 years to more than 55 years, suggesting that spatial variability of subsurface formation significantly affected the dissolution behavior of entrapped PCE. The temporal distributions of PCE saturation were significantly altered owing to natural gradient water flush. Therefore, soil heterogeneity is a critical factor to design strategies for characterization and remediation of DNAPL contaminated sites. The systematic and comprehensive design algorithm developed and described herein perhaps serves as a template for application at other DNAPL sites in Thailand.  相似文献   

3.
The influence of varying groundwater flow velocities on DNAPL infiltration and spreading behaviour was investigated by multiphase modelling using TMVOC and PetraSim. The multiphase models were calibrated by results of previously conducted laboratory experiments for the complete spatio-temporal range of the experiments. The small scale 2D scenario modelling was applied to qualify and quantify changes in position, architecture, geometry and dissolution of a TCE body in a fully saturated homogeneous sandy medium. The applied flow velocities ranging from 0.05 up to 40.00 m/day exhibited that the DNAPL TCE is affected even at the lowest flow velocity in its position, its size and its architecture. Additionally, several impermeable lenses with simple geometry were assumed in the model, to investigate the influence of stratified subsoil. In the experimental set-ups, the DNAPL body reacts more sensitive to the applied groundwater flow velocities than to the geometrical set-up of the scenarios. A possible consequence can be the transportation and displacement of a DNAPL pool due to natural or anthropogenic induced high groundwater flow velocities, as by Pump and Treat facilities, complicating site investigation process and planning of remediation activities.  相似文献   

4.
To verify the applicability of the time-continuous electrical conductivity (EC) measurement in analyzing the contaminant movement in the subsurface, a new column test device employing non-destructive four-electrode sensors was developed. Using the seawater to create a simple one-dimensional steady-flow condition, laboratory transport experiments were conducted and the EC breakthrough curves at different distances were obtained. Comparison between the EC breakthrough curves obtained from the EC sensors and those from the effluent solute chemical analysis showed that the estimated resident concentration from the EC breakthrough curves are useful in understanding solute transport in soils. The pore water velocity and longitudinal dispersion coefficient estimated using the computer code, CXTFIT, were found to be slightly underestimated, especially at sensors located at smaller distances from the outlet boundary. Results showed that the developed column test device employing the four-electrode sensors proposed in this study provides a non-destructive, convenient, and inexpensive means of evaluating the seawater transporting in soils.  相似文献   

5.
The migration of contaminant through soil is usually modeled using the advection‐dispersion equation and assumes that the porous media is stationary without introducing a constitutive equation to represent soil structure. Consequently, time‐dependent deformation induced by soil consolidation or physical remediation is not considered, despite the need to consider these variables during planning for the remediation of contaminated ground, the prediction of contaminated groundwater movement, and the design of engineered landfills. This study focuses on the numerical modeling of solute transfer during consolidation as a first step to resolve some of these issues. We combine a coupling theory‐based mass conservation law for soil‐fluid‐solute phases with finite element modeling to simulate solute transfer during deformation and groundwater convection. We also assessed the sensitivity of solute transfer to the initial boundary conditions. The modeling shows the migration of solute toward the ground surface as a result of ground settlement and the dissipation of excess pore water pressure. The form of solute transport is dependent on the ground conditions, including factors such as the loading schedule, contamination depth, and water content. The results indicate that an understanding of the interaction between coupling phases is essential in predicting solute transfer in ground deformation and could provide an appropriate approach to ground management for soil remediation.  相似文献   

6.
A study of the fracture distribution, hydraulic properties, groundwater levels and the transport of bromide was conducted to characterize vertical transport in the oxidized and reduced zones of a fractured glacial till. Detailed vertical profiles of groundwater levels and solute concentrations were obtained over a 4.5-year period. Vertical migration occurred at several time scales, as a low concentration front was rapidly transported at rates of 100–500 m/year ahead of a slower moving main plume, which advanced at rates of 0.2–0.8 m/year. Concentrations in the leading edge of the plume displayed a high degree of spatial variability over short vertical distances through day 1,000. Late in the test, the influence of matrix diffusion became apparent as concentration patterns developed from being irregular to more uniform distributions. Calculations show that the mass within the low concentration plume front accounts for less than 1% of the total solute mass. Simulation of the breakthrough curves using a simple one-dimensional advection-dispersion model of transport in porous media indicates that vertical transport is dominated by advection. Furthermore, the results indicate that vertical transport of solutes in oxidized and reduced zones of the till can be adequately simulated using an equivalent porous media.  相似文献   

7.
迄今为止,注入时间和静水压力对溶质在深层承压地热水中的运移规律影响研究少有报道。通过模拟35℃的低温地热环境,开展了注入时间1,2,3,4,5 h以及静水压力0,6,9 MPa条件下Cl-的运移柱模拟试验。采用CXTFIT 2.1软件进行数值模拟,探讨了孔隙型热储砂土中Cl-的运移规律和影响因素。结果表明:在模拟的低温孔隙型热储层中,不同注入时间和静水压力下,Cl-的运移曲线均呈正态对称分布,一维对流弥散(CDE)模型也可较好地表征其穿透曲线,因此溶质扩散过程符合菲克定律。注入时间的不同,会引起Cl-的穿透曲线、运移参数发生变化,这与不同注入时间条件下溶质注入总量、柱内溶质浓度差以及分子扩散能力不同有关。在不同静水压力条件下,弥散系数从0 MPa的25.22 cm2/h增加到9MPa的36.13 cm2/h,分子扩散系数、机械弥散系数以及弥散度也随之增大,因此溶质的弥散作用随静水压力的增大而增强。研究结果对于丰富地下水的溶质运移理论具有重要意义。  相似文献   

8.
重非水相液体(dense nonaqueous phase liquid,DNAPL)污染土壤和地下水的问题已引起广泛关注,研究其在不同粒径多孔介质及其界面的运移特征形态是确定污染区域、修复治理土壤和地下水环境的前提。文章通过室内试验研究多孔介质界面对DNAPL运移与分布特性的影响。首先在二维砂槽上进行DNAPL污染物的入渗试验,试验过程中用数码相机拍照,将DNAPL扩散过程以图像的形式记录下来;然后用AutoCAD对图片进行处理,绘制出DNAPL迁移过程的锋面变化图。结果表明:DNAPL入渗过程中,迁移主要受到重力作用与毛细作用的控制,毛细作用力随着介质粒径的增大逐层减小,重力作用逐渐起主导作用使污染物入渗速度逐层增大;介质结构影响DNAPL的迁移形态,介质粒径逐层增大,DNAPL污染物的渗流面与指进扩散宽度逐层减小,扩散方式由面状变为指状;在不同粒径介质界面介质结构发生突变时,DNAPL迁移锋面线曲率也相应变大,此时DNAPL的迁移呈现“凸”型特征,另外,不同的界面横向扩散的滞留宽度不同,随着介质粒径的增大,界面的横向扩散宽度相对变短。  相似文献   

9.
在3次野外取水样分析的基础上,分析了研究区域有机污染特征,并根据室内实验和国内外文献资料所获取的参数,利用地下水模拟系统软件(GMS)对研究区三氯乙烯(TCE)和四氯乙烯(PCE)在地下水中的运移转化进行数值模拟研究,模拟结果表明:研究区地下水中TCE和PCE存在生物降解作用,但是反应速率很小,这表明在相当长的时间内,其浓度仍可能保持在相当的水平上。  相似文献   

10.
溶质暂态存储是岩溶地下水溶质运移过程中的普遍现象。为揭示岩溶管道与裂隙介质间溶质暂态存储机制,本文构建室内管道-裂隙物理模型,开展集中补给条件下的定量示踪试验,运用双区对流弥散模型实现溶质运移过程模拟。研究表明:随着集中补给水动力条件的增强,裂隙暂态存储水量呈线性增加趋势,溶质穿透曲线由单峰型向双峰型转变;管道和裂隙中的平均流速呈负相关关系,溶质在管道和裂隙中的滞留时间差决定了穿透曲线的形态;溶质暂态存储引发了穿透曲线的拖尾效应和双峰现象,对岩溶地下水溶质运移过程具有重要的控制作用。  相似文献   

11.
A previously developed two-dimensional numerical model is further developed for simulating the transport of dissolved contaminants originating from dissolution of a coal tar pool in a stratified, saturated porous medium. The model is used to simulate contaminant transport resulting from a rectangular-shaped coal-tar-pool dissolution experiment conducted in a large-scale experimental aquifer. The experimental porous medium consists of two sand strata, a high-hydraulic-conductivity upper stratum and a low-hydraulic-conductivity bottom stratum. The experiment was conducted to a time of 354 days and the groundwater velocity was changed several times within this duration. Model simulations show good agreement against observed contaminant concentrations, and simulations show that dissolved solute below the pool migrated deeper into the bottom stratum as compared to the upper stratum. Furthermore, simulations also suggest that contaminant concentrations in the lower stratum never reached quasi steady-state during the experimental time frame.  相似文献   

12.
生物降解作用下地下水中TCE、PCE迁移转化的数值模拟研究   总被引:8,自引:0,他引:8  
根据室内三氯乙烯(TCE)、四氯乙烯(PCE)运移转化的土柱实验和研究区地下水化学特征,建立了研究区微生物作用下TCE、PCE迁移转化的数学模型,并进行了计算机数值模拟,模拟结果与实测值基本一致,表明本次研究建立的数学模型是正确的,研究区地下水中存在生物降解作用,为下一步有机污染的治理提供了科学依据。  相似文献   

13.
苯、甲苯对粒状铁去除四氯乙烯影响的柱实验研究   总被引:2,自引:1,他引:1  
挥发性氯代烃和石油烃类污染是地下水中最常见的混合污染类型,而且这两类污染物毒性极强,对人类危害非常严重。文中选取具有代表性的四氯乙烯、苯和甲苯为研究对象,采用柱实验的方法研究苯和甲苯在粒状铁反应系统中吸附平衡后,对粒状铁去除四氯乙烯的机理及反应动力学的影响。在实验装置运行的过程中,苯、甲苯和四氯乙烯的浓度始终控制在2mg/L左右的水平。实验结果表明:苯或甲苯的存在对被还原的产物组成没有影响,主要氯代中间产物均为TCE、1,1-DCE、cis-1,2-DCE和VC,但组成比例略有不同。苯和甲苯的存在对去除速率有影响,即苯对四氯乙烯的去除有促进作用,去除速率平均提高13.5%;而甲苯则抑制四氯乙烯的去除,去除速率平均降低13.8%。对比控制柱,苯和甲苯存在时对出水水化学变化的影响没有明显差异。  相似文献   

14.
魏恒  肖洪浪 《冰川冻土》2013,35(6):1582-1589
在地下水的相关研究中,农药和石油等地下水污染、土地盐碱化、海水入侵等诸多实际问题主要的研究方法都涉及地下水溶质迁移模拟. 相比地下水水流模拟的相对完善,对溶质迁移的模拟比较薄弱且迁移过程本身复杂性较高,目前地下水溶质迁移的研究工作还处在全面发展的阶段. 文中阐述了反映地下水溶质迁移机理和过程的数学模型,综述了溶质迁移模拟在地下水污染物防治、土地盐碱化、海水入侵、石油和放射性废物扩散等问题的诸多应用,归类了目前溶质迁移模拟所使用的对流迁移、对流-弥散模拟等主要数值方法,并对这些方法的优缺点和应用实例做了总结. 最后,分析了目前溶质迁移模拟中存在的不足,展望了未来在参数确定、裂隙介质运移机理和多相介质条件下运移模拟可能取得的突破.  相似文献   

15.
Non-dimensional solutions to the equations for the combined advective and diffusive one-dimensional transport of heat and solute in a layer are derived for fixed temperature/concentration on the boundaries and initial conditions of a linear gradient across the layer or a step function at the lower boundary. The solutions allow distinction of regimes in which advective or diffusive transport of either heat or solute predominate as a function of fluid flux, time and a length scale. The much lower diffusive coefficients for solute than heat results in a significant range of length scales and fluid flux rates characterised by advection of matter and diffusion of heat. The advective velocity of a component is a function of its fluid:rock partition coefficient. The most rapidly transported tracers which partition largely into the fluid phase, such as He, will travel orders of magnitude faster than heat or compatible solutes such as oxygen. Geochemical profiles in boundary layer regions where both advective and diffusive transport are significant are shown to be particularly informative as to properties of the rocks related to fluid flow such as porosity, permeability, time scales and fluid flux rates. The importance of advection can be directly estimated from the asymmetry of the geochemical profiles across individual layers.  相似文献   

16.
单裂隙介质中的溶质运移研究综述   总被引:4,自引:0,他引:4       下载免费PDF全文
程诚  吴吉春  葛锐  叶明 《水科学进展》2003,14(4):502-508
总结了有关单裂隙介质中溶质运移的基本特点和实验研究的成果,得出影响单裂隙介质中溶质运移的几个重要因素,例如骨架扩散、弥散、表面吸附等,介绍了几个具有代表性的数学模型,同时对模型的有效性和局限性进行了初步讨论.  相似文献   

17.
Combining groundwater flow models with solute transport models represents a common challenge in groundwater resources assessments and contaminant transport modeling. Groundwater flow models are usually constructed at somewhat larger scales (involving a coarser discretization) to include natural boundary conditions. They are commonly calibrated using observed groundwater levels and flows (if available). The groundwater solute transport models may be constructed at a smaller scale with finer discretization than the flow models in order to accurately delineate the solute source and the modeled target, to capture any heterogeneity that may affect contaminant migration, and to minimize numerical dispersion while still maintaining a reasonable computing time. The solution that is explored here is based on defining a finer grid subdomain within a larger coarser domain. The local-grid refinement (LGR) implemented in the Modular 3D finite-difference ground-water flow model (MODFLOW) code has such a provision to simulate groundwater flow in two nested grids: a higher-resolution sub-grid within a coarse grid. Under the premise that the interface between both models was well defined, a comprehensive sensitivity and uncertainty analysis was performed whereby the effect of a parameter perturbation in a coarser-grid model on transport predictions using a higher-resolution grid was quantified. This approach was tested for a groundwater flow and solute transport analysis in support of a safety evaluation of the future Belgian near-surface radioactive waste disposal facility. Our reference coarse-grid groundwater flow model was coupled with a smaller fine sub-grid model in two different ways. While the reference flow model was calibrated using observed groundwater levels at a scale commensurate with that of the coarse-grid model, the fine sub-grid model was used to run a solute transport simulation quantifying concentrations in a hypothetical well nearby the disposal facility. When LGR coupling was compared to a one-way coupling, LGR was found to provide a smoother flow solution resulting in a more CPU-efficient transport solution. Parameter sensitivities performed with the groundwater flow model resulted in sensitivities at the head observation locations. These sensitivities identified the recharge as the most sensitive parameter, with the hydraulic conductivity of the upper aquifer as the second most sensitive parameter in regard to calculated groundwater heads. Based on one-percent sensitivity maps, the spatial distribution of the observations with the highest sensitivities is slightly different for the upper aquifer hydraulic conductivity than for recharge. Sensitivity analyses were further performed to assess the prediction scaled sensitivities for hypothetical contaminant concentrations using the combined groundwater flow and solute transport models. Including all pertinent parameters into the sensitivity analysis identified the hydraulic conductivity of the upper aquifer as the most sensitive parameter with regard to the prediction of contaminant concentrations.  相似文献   

18.
The groundwater downstream of a former sewage irrigation farm in Berlin is contaminated with ammonium (NH4 +) and para-toluenesulfonamide (p-TSA), besides other anthropogenic pollutants. In the field, in situ removal of NH4 + by gaseous oxygen (O2) and air injection is currently being tested. A laboratory column experiment using aquifer material and groundwater from the site was performed to determine whether this remediation technology is also feasible to reduce high p-TSA concentrations in the anoxic groundwater. First, the column was operated under anoxic conditions. Later, compressed air was introduced into the system to simulate oxic conditions. Samples were collected from the column outlet before and after the addition of compressed air. The experiment revealed that whereas p-TSA was not removed under anoxic conditions, it was almost fully eliminated under oxic conditions. Results were modelled using a transient one-dimensional solute transport model. The degradation rate constants for p-TSA increased from 2.8E−06 to 7.5E−05 s–1 as a result of microbial adaption to the change of redox conditions. Results show that O2 injection into an anoxic aquifer is a successful strategy for p-TSA remediation.  相似文献   

19.
Detailed field sampling and analyses and laboratory-based diffusion-cell experiments were used in conjunction with 3-D reactive transport modeling (MODFLOW and MT3D99) to quantify the fate and long-term (10 ka) transport of As in the Rabbit Lake In-pit Tailings Management Facility (RLITMF), northern Saskatchewan, Canada. The RLITMF (300 m × 425 m × 90 m thick) was engineered to ensure solute transport within the RLITMF is dominated by diffusion. Concentrations of As in the tailings pore fluids ranged from 0.24 to 140 mg/L (n = 43). Arsenic speciation analyses indicate 90% of this arsenic exists as As5+. This observation is supported by pH–Eh measurements of pore fluids (n = 135). Geochemical analyses yielded a strong inverse correlation between the Fe/As molar ratio in the tailings solids and the corresponding concentration of dissolved As, which is attributed to the adsorption of As to secondary 2-line ferrihydrite present in the tailings. Diffusion-cell testing yielded values for the effective diffusion coefficient, sorption coefficient, and effective porosity of As in the tailings of 4.5 × 10−10 m2/s, 2–4 cm3/g and 0.36, respectively. Reactive transport simulations using the field and laboratory data show adsorption of As to the tailings and diffusive transport of dissolved As in the tailings should reduce the source term concentration of As to between 40% and 70% of the initial concentrations over the 10 ka simulation period. Based on these simulations, the As concentrations in the regional groundwater, 50 m down gradient of the tailings facility, should be maintained at background concentrations of 0.001 mg/L over the 10 ka period. These findings suggest the engineered in-pit disposal of U mine tailings can provide long-term protection for the local groundwater regime from As contamination.  相似文献   

20.
选择北京平原区水文地质、环境地质等方面都比较典型的沙子营垃圾堆放场,建立了其水文地质模型。在充分收集资料、分析得出部分计算所需参数后,采用现场弥散实验、勘查取样测试等方法,求得了该含水层的弥散系数等参数;用二维非稳定流溶质运移方程对污染物在此含水层中的迁移扩散规律、速度和污染范围等进行了模拟计算;采用现场钻探、取样测试分析等方法,评价了该含水层的实际污染状况。实验模拟计算和现场调查结果表明:污染物在潜水含水层中的运移规律遵循二维非稳定流场中的溶质运移方程,污染物在潜水含水层中的运移速度约为86.25m/a,迁移扩散主要发生在地下水流向上,侧向扩散宽度极小,是地下水流向上的1/17。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号