首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
在电流片两侧的基态速度场与磁场相互平行的位形下,讨论了速度切变对撕裂模不稳定性的影响.结果表明,只有当速度场的相对变化率与磁场的相对变化率符号相同(Sign(v_0/v_0)=sign(B_0~')),|v_0~'/v_0|≥|B_0'/B_0|时,速度切变有利于不稳定增长,否则不利于不稳定增长.  相似文献   

3.
无力场被广泛用来模拟太阳活动区的强磁场,本文从Bernstein能量原理出发,导出了无力场能量原理的普遍形式,并给出了若干稳定性的充分条件,它们可方便而有效地对无力场进行稳定性判断。  相似文献   

4.
Solar atmosphere is a rotating plasma shell filled by magnetic field. The coupling between the magnetic and the movement of plasma makes a variety of magnetohydrodynamic phenomena in the solar atmosphere. After giving a brief introduction on the basic theoretical regime of solar MHD, we describe mainly the magnetohydrodynamic aspects of solar flares, solar prominences (filaments) and flux tubes with different scales. Some future works are also discussd.  相似文献   

5.
6.
关于光球横向磁场和电流的测定   总被引:1,自引:0,他引:1  
  相似文献   

7.
孙凯 《天体物理学报》1997,17(2):195-201
本介绍关于磁流体力学流动理论研究的一些结果,在所研究的流动中,允许流速垂直于磁场,允许各物理量随时间变化。在各有关的守恒定律和感应方程中引进代换,不经过求解,用严格的解析方法获得了有关解的某些性质,中给出一个简单的例子,在其中计算二维沿磁力线的稳恒态MHD流动。  相似文献   

8.
关于日冕中稳恒态磁流体力学流动的一个定理   总被引:1,自引:1,他引:0  
孙凯 《天体物理学报》1995,15(4):387-389
本报告了在日冕或其他天体物理环境中,沿磁力线流动的稳恒态磁流体力学流动的一个定理和一个重要关系。它们是利用宏观动能密度对磁能密度的比例导出的。  相似文献   

9.
磁重联被认为是太阳耀斑的产生机制,本文数值模拟在日冕中发生在磁重联过程,结果表明耀斑环的表观运动是磁重联的自洽结果;由重联点发出的慢激波对耀斑环的加热有贡献;耀斑环的上升并不意味着重联点的上升。  相似文献   

10.
根据力平衡条件,求得了与静止分层大气中一条孤立细磁通量管形状有关的一个积分,(1-M_a~2)Bcosθ=const.,这里M_a是阿尔芬马赫数,B是磁场强度,θ是管切向与水平方向的夹角,并简单地讨论了这个积分在等温与静平衡条件下的应用.  相似文献   

11.
12.
运用统计方法系统研究了1978-2002年太阳光球磁通量南北不对称性变化特征,发现其与太阳活动周有关.不对称值在太阳活动极小年要明显高于太阳活动极大年,并且磁通量变化总是由上升段的北半球占优逐渐过渡到下降段的南半球占优.另外运用小波变换方法详细讨论了这种不对称性变化可能存在的周期信息.  相似文献   

13.
Ruzmaikin  A. 《Solar physics》1998,181(1):1-12
We report observations of the large-scale spatial dependence of the Sun's luminosity variations over the period 1993–1995. The measurements were made using a new scanning disk solar photometer at Big Bear Solar Observatory, specially designed to measure large-scale brightness variations at the 10–4 level. Since the level of solar activity was very low for the entire observation period, the data show little solar cycle variation. However, the residual brightness signal I/I (after subtracting the mean, first, and second harmonics) does show a strong dependence on heliocentric angle, peaking near the limb. This is as one would expect if the residual brightness signal (including the excess brightness coming from the active latitudes) were primarily facular in origin. Additional data over the next few years, covering the period from solar minimum to maximum, should unambiguously reveal the large-scale spatial structure of the solar cycle luminosity variations.  相似文献   

14.
从细磁通量管运动方程组导出了特征速度、特征线及其相容关系。这些结果是用特征线法研究细磁通量管运动的基础,也是正确提出定解问题的依据。表征细磁通量管横向波传播的特征速度与管内流动的AlfvenMach数有关。当管内流速超过kelvin-Helmholtz不稳定性临界值时,不存在横向波模式。  相似文献   

15.
Magnetic reconnection induced by Kelvin Helmholtz instability   总被引:1,自引:0,他引:1  
MHD simulation study is performed to investigate magnetic reconnection induced by the Kelvin Helmholtz instability in the initially sheared magnetic field geometry as well as in the uniform magnetic field geometry. Slow mode rarefaction structures seen in the uniform field case are not observed in the sheared field case. Dynamo action is less prominent and the conversion of plasma flow energy into the other forms of energy is also smaller in the sheared field case than in the uniform field case. Momentum transport is mostly due to the hydrodynamic stress in the sheared field case, while the electromagnetic stress is dominant in the uniform field case. The long term evolutions are also markedly different in the two cases. In the uniform field geometry, the magnetic field lines twisted due to the Kelvin Helmholtz instability become reconnected and flattened so that they resume the straight field line structure which resembles the initial field geometry. The magnetic field, however, is not uniform with smaller intensity in the central region where the pressure balance is partially maintained by the enhanced thermal pressure. In the initially sheared magnetic field geometry, magnetic reconnection continues to operate until the end of the simulation and the conversion of the flow energy into the thermal energy is still seen.  相似文献   

16.
根据太阳发电机理论中的ω-效应,在太阳对流层内将产生纬向磁场,它的磁浮力要促使流团上浮。在文[5]中讨论了在流团上浮过程中,流团表面的磁扩散率梯度将对纬向磁场产生扰动,这一扰动使纬向磁场集积在流团表面磁扩散率梯度大的地方,围绕流团表面形成了黑子磁环。 本文进一步从磁流力学方程组的小扰动方程出发探讨了太阳黑子磁环发展的不稳定性问题。结果表明:在扰动方程中存在着不稳定模式。这一不稳定性产生的原因是由于当温度(或者说磁扩散率)受到小扰动时,纬向磁场要集积在磁扩散率(或温度)梯度大的地方,而磁场的集积将导致磁压增强及气压减低。在绝热条件下,这将使温度减低,而温度的减低又加强了温度梯度的增大,这又进一步促使磁场在梯度大的地方集积。这种磁场与温度发展的相互促进关系可以称它为磁扩散不稳定性。本文认为太阳黑子磁环和它低温的形成正是由于这种不稳定性发展起来的。  相似文献   

17.
Worden  John  Harvey  John 《Solar physics》2000,195(2):247-268
We describe a procedure intended to produce accurate daily estimates of the magnetic flux distribution on the entire solar surface. Models of differential rotation, meridional flow, supergranulation, and the random emergence of background flux elements are used to regularly update unobserved or poorly observed portions of an initial traditional magnetic synoptic map that acts as a seed. Fresh observations replace model estimates when available. Application of these surface magnetic transport models gives us new insight into the distribution and evolution of magnetic flux on the Sun, especially at the poles where canopy effects, limited spatial resolution, and foreshortening result in poor measurements. We find that meridional circulation has a considerable effect on the distribution of polar magnetic fields. We present a modeled polar field distribution as well as time series of the difference between the northern and southern polar magnetic flux; this flux imbalance is related to the heliospheric current sheet tilt. We also estimate that the amount of new background magnetic flux needed to sustain the `quiet-Sun' magnetic field is about 1.1×1023 Mx d–1 (equivalent to several large active regions) at the spatial resolution and epoch of our maps. We comment on the diffusive properties of supergranules, ephemeral regions, and intranetwork flux. The maps are available on the NSO World Wide Web page.  相似文献   

18.
Coronal Magnetic Flux Rope Equilibria and Magnetic Helicity   总被引:1,自引:0,他引:1  
1 INTRODUCTIONObservations show that the magnetic helicity of solar magnetic structures has a predominantsign in each hemisphere of the Sun, positive in the southern hemisphere and negative in thenorthern, regardless of the solar cycle (Rust, 1994). The magnetic helicity is strictly conservedin the frame of ideal MHD (WOltjer, 1958), and approximately conserved in the presence ofresistive dissipation and magnetic reconnection in a highly conductive plajsma (Taylor, 1974;Berger, 1984; H…  相似文献   

19.
A comparative analysis of solar and heliospheric magnetic fields in terms of their cumulative sums reveals cyclic and long-term changes that appear as a magnetic flux imbalance and alternations of dominant magnetic polarities. The global magnetic flux imbalance of the Sun manifests itself in the solar mean magnetic field (SMMF) signal. The north – south asymmetry of solar activity and the quadrupole mode of the solar magnetic field contribute the most to the observed magnetic flux imbalance. The polarity asymmetry exhibits the Hale magnetic cycle in both the radial and azimuthal components of the interplanetary magnetic field (IMF). Analysis of the cumulative sums of the IMF components clearly reveals cyclic changes in the IMF geometry. The accumulated deviations in the IMF spiral angle from its nominal value also demonstrate long-term changes resulting from a slow increase of the solar wind speed over 1965 – 2006. A predominance of the positive IMF B z with a significant linear trend in its cumulative signal is interpreted as a manifestation of the relic magnetic field of the Sun. Long-term changes in the IMF B z are revealed. They demonstrate decadal changes owing to the 11/22-year solar cycle. Long-duration time intervals with a dominant negative B z component were found in temporal patterns of the cumulative sum of the IMF B z .  相似文献   

20.
Lapenta  Giovanni  Knoll  D.A. 《Solar physics》2003,214(1):107-129
We consider the stability of current sheets where a normal component of the field is present. It is well known that reconnection in such systems progresses orders of magnitude too slow to explain observations, even when full kinetic models are used. We consider here a new possible mechanism for fast reconnection in such systems. We consider the effect of the possible presence of velocity shear that can drive the Kelvin–Helmholtz instability (KHI). The effect of the KHI is shown to convert shear flow into compression flow that drives reconnection. Three scaling effects can be discerned in the simulations. First, the reconnection rate is directly controlled by the driving mechanism which is provided by the KHI. The result of this new mechanism is that fast reconnection can be achieved even in absence of anomalous resistivity. Second, the effect of varying the initial sheared flow along the main magnetic field direction enhances the reconnection process. Finally, the reconnection rate is insensitive to the value of resistivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号