首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Suspended particulate matter samples were collected from the water column, the bottom nepheloid layer and the ‘ fluffy layer ’ from four stations along a coastal-basin transect in the Pomeranian Bight, western Baltic Sea. Sampling was performed nine times between October 1996 and December 1998 for various analyses, including electron probe x-ray micro analysis for detailed mineralogical investigations.Specific vertical patterns of clay mineral distributions were found. Suspended particulate matter (SPM) in the bottom nepheloid layer and the ‘ fluffy layer ’ overlying sediments was enriched in organic carbon and hydrated three layer clay minerals, whereas the non-aggregated SPM was dominated by quartz and biogenic opal. It appears that separation effects operate during aggregation of mineral particles and organic matter in repeated cycles of resuspension and settling. No clear seasonal variations in the composition of the SPM were found, in spite of high spatial and temporal variability of biological and physical variables. The results suggest that preferential incorporation, possibly aided by microbiological colonization, of hydrated three layer silicates into the organic flocs is a process that occurs under a wide range of conditions. Because aggregates sink faster than individual particles, aggregate formation led to a relative enrichment of illite and smectite in the near-bottom layers. Considering the affinity of organic contaminants and heavy metals to organic matter, the selective removal of aggregated organic matter and hydrated three-layer clay minerals from the water column and enhanced transport in the near-bottom fluffy layer may be a natural cleansing mechanism operating in the shallow waters of the bight.  相似文献   

2.
福建罗源湾海水悬浮物的研究   总被引:1,自引:0,他引:1  
于1986年11月-1987年9月对福建罗源湾海水悬浮的含量的观测结果表明,水动力条件引起的再悬浮过程和生物活分别是罗源湾冬季和夏季悬浮物分布及性质变化的主要影响因素。底部沉积物的再悬浮对水体营养盐的再生和补充及有机碎屑的提供起重要的作用,夏季颗粒有机碳的学降能量一般占水柱浮游植物初级生产量的67-85%,大部分初级生产的有机碳沉降海底。  相似文献   

3.
The transfer of material through the twilight zone of the ocean is controlled by sinking particles that contain organic matter (OM) and mineral ballast. During the MedFlux field program in the northwestern Mediterranean Sea in 2003, sinking particulate matter was collected in time series (TS) and settling velocity (SV) traps and analyzed for amino acids, lipids, and pigments (along with ballast minerals) [Lee, C., Armstrong, R.A., Wakeham, S.G., Peterson, M.L., Miquel, J.C., Cochran, J.K., Fowler, S.W., Hirschberg, D., Beck, A. Xue, J., 2009b. Particulate matter fluxes in time series and settling velocity sediment traps in the northwestern Mediterranean Sea. Deep-Sea Research II, this volume [doi:10.1016/j.dsr2.2008.12.003]]. The goal was to identify how organic chemical compositions of sinking particles varied as a function of their in-situ settling velocity. The TS record was used to define the biogeochemical character and temporal pattern in flux during the period of SV trap deployment. Temporal variations in organic and mineral compositions are consistent with particle biogeochemistry being driven by the seasonal succession of phytoplankton. Spring diatom bloom conditions led to a high flux of rapidly sinking aggregates and zooplankton fecal matter; summer oligotrophy followed and was characterized by a higher proportion of slowly sinking phytoplankton cells. Bacterial degradation is particularly important during the low-flux summer period. Settling velocity traps show that a large proportion of particulate organic matter sinks at 200–500 m d−1. Organic compositions of this fast-sinking material mirrors that of fecal pellets and aggregated material that sinks as the spring bloom terminates. More-slowly sinking OM bears a stronger signature of bacterial degradation than do the faster-sinking particles. The observation that compositions of SV-sorted fractions are different implies that the particle field is compositionally heterogeneous over a range of settling velocities. Thus physical and biological exchange between fast-sinking and slow-sinking particles as they pass down the water column must be incomplete.  相似文献   

4.
本实验选择了实验室最佳磷限制条件,并采用连续及一次培养方式研究了海水在磷限制条件下汞对角毛藻的污染效应。实验结果表明;不论连续培养还是一次培养,低磷营养盐浓度受汞毒害更敏感,延缓期延长,指数生长阶段拖后。测得浮游植物对汞的浓集具有高富集倍数,富集因子达10~5数量级,与围隔生态系中所测浮游植物对汞的浓集因子一致。  相似文献   

5.
To study biological effects on the particulate removal of chemical elements from seawater, sediment trap experiments were carried out successively ten times throughout the spring phytoplankton bloom in Funka Bay. Sediment traps were deployed every one to two weeks at 1, 40 and 80 m depths. The settling particles obtained were analyzed for trace metals, phosphate and silicate. The propagation of diatoms in spring results in larger particulate fluxes than that of dinoflagellates. The biogenic silicate concentration is higher in the earlier period, when diatoms are predominant, than in the subsequent period, when dinoflagellates are predominant. The concentrations of aluminum, iron, manganese and cobalt in the settling particles comprising largely biogenic particles are lower during phytoplankton bloom. The concentration of copper is not reduced by the addition of biogenic particles, and its vertical flux is approximately proportional to the total flux, indicating that its concentration in the biogenic particles is nearly equal to that in the non-biogenic particles. The results for nickel and lead show the same tendency as for copper. Cadmium is more concentrated in biogenic particles than in non-biogenic particles, and the concentration of cadmium in the settling particles decreases with depth, similarly to phosphate and organic matter. Thus, metals in seawater are segregated by biological affinities, and the degree of incorporation into biogenic particles is in the order Cd > Pb, Ni, Cu > Co > Mn, Fe, Al. Biogenic particles are the most important agent controlling the vertical distribution of metals in the ocean. They remove the metals from the surface water, transport them through the water column, and regenerate them in the deep.  相似文献   

6.
A degradation experiment with zooplankton was carried out to investigate the diagenesis of zooplanktonic organic matter, lipids, and lipid classes. In addition, reactivities and the quantitative relation between bulk organic carbon and waxes (which are the biomarkers of zooplankton) were compared during the experiment to evaluate the possibility of estimating the contributions of zooplanktonic organic matter in organic carbon pools, such as settling particles and surface sediments, from the wax concentration. Lipids were found to be more labile than the bulk organic carbon. Major parts of the organic carbon and lipids which remained on day 120 were found in the particulate fraction, and the accumulations of stable organic carbon and lipids in the dissolved fraction were limited. Although the lipids were more labile than the bulk organic carbon in the early phase of the experiment, the degradation rate of lipids obviously decreased in the subsequent degradation period, demonstrating the presence of stable lipids in zooplankton. Whereas triglycerides readily decreased, phospholipids persisted, making a major contribution to particulate lipids throughout the experiment. Waxes and other structural lipids such as glycolipids were also stably preserved in particulate lipids, suggesting that stable lipids in particulate matter are composed of structural lipids and waxes during early diagenesis. The degradation rate of waxes showed values comparable to that of bulk organic carbon after 11 days of degradation, resulting in constant ratios of waxes/bulk organic carbon (0.8 ± 0.2%, n = 7) during the later incubation period (after 11 days). This result suggests that the ratio could prove useful in evaluating the zooplanktonic organic carbon in organic carbon pools such as surface sediments and settling particulates.  相似文献   

7.
A 2-yr record of downward particle flux was obtained with moored sediment traps at several depths of the water column in two regions characterized by different primary production levels (mesotrophic and oligotrophic) of the eastern subtropical North Atlantic Ocean. Particle fluxes, of ∼71–78% biogenic origin (i.e. consisting of CaCO3, organic matter and opal) on average, decrease about six-fold from the mesotrophic site (highest fluxes in the North Atlantic) nearer the Mauritanian margin (18°30′N, 21°00′W) to the remote, open-ocean, oligotrophic site (21°00′N, 31°00′W). This decrease largely reflects the difference in total primary production between the two sites, from ∼260 to ∼110 g organic C m−2 yr−1. At both sites, temporal variability of the downward particle flux seems to be linked to westward surface currents, which are likely to transport seaward biomass-rich water masses from regions nearer the coast. The influence of coastal upwelling is marked at the mesotrophic site. The large differences between the 1991 and 1992 records at that site, where carbon export is large, underscore the interest of long-term studies for export budget estimates. The different productivity regimes at the two sites seem to induce contrasting downward modes of transport of the particulate matter, as shown in particular by the faster settling rates and the higher E ratio (particulate organic carbon export versus total primary production) estimated at the mesotrophic site.  相似文献   

8.
The quantitative relationship between organic carbon and mineral contents of particles sinking below 1800 m in the ocean indicates that organisms with mineral shells such as coccolithophores are of special importance for transporting carbon into the deep sea. Several hypotheses about the mechanism behind this relationship between minerals and organic matter have been raised, such as mineral protection of organic matter or enhanced sinking rates through ballast addition. We examined organic matter decomposition of calcifying and non-calcifying Emiliania huxleyi cultures in an experiment that allowed aggregation and settling in rotating tanks. Biogenic components such as particulate carbon, particulate nitrogen, particulate volume, pigments, transparent exopolymer particles (TEP), and particulate amino acids in suspended particles and aggregates were followed over a period of 30 d. The overall pattern of decrease in organic matter, the amount of recalcitrant organic matter left after 30 d, and the compositional changes within particulate organic matter indicated that cells without a shell are more subject to loss than calcified cells. It is suggested that biogenic calcite helps in the preservation of particulate organic matter (POM) by offering structural support for organic molecules. Over the course of the experiment, half the particulate organic carbon in both calcifying and non-calcifying cultures was partitioned into aggregates and remained so until the end of the experiment. The partial protection of particulate organic matter from solubilization by biominerals and by aggregation that was observed in our experiment may help explain the robustness of the relationship between organic and mineral matter fluxes in the deep ocean.  相似文献   

9.
The flux of settling particles in the ocean has been widely explored since 1980s due to its important role in biogenic elements cycling, especially in the transport of particulate organic carbon (POC) in the deep sea. However, research in the seamount area of the oligotrophic subtropical Northwest Pacific Ocean is lacking. In this work, two sediment traps were deployed at the foot and another two at the hillside of Niulang Guyot from August 2017 to July 2018. The magnitude and composition of particle fluxes were measured. The main factors influencing the spatial variations of the fluxes were evaluated. Our results indicated a low particulate flux from Niulang Guyot area in the Northwest Pacific Ocean, reflecting low primary productivity of the oligotrophic ocean. The total mass flux (TMF) decreased from 2.57 g/(m2·a) to 0.56 g/(m2·a) with increasing depth from 600 m to 4 850 m. A clear seasonal pattern of TMF was observed, with higher flux in summer than that in winter. The peak flux of 26.52 mg/(m2·d) occurred in August at 600 m, while the lowest value of 0.07 mg/(m2·d) was shown in February at 4 850 m. The settling particles at the deep layers had similar biochemical composition, with calcium carbonate (CaCO3) accounting for up to 90%, followed by organic matter and opal, characteristics of Carbonate Ocean. The POC flux decreased more rapidly in the twilight layer because of faster decomposition, remineralization, and higher temperature. A small fraction of POC was transported into the deep ocean by biological pump. Particle fluxes were mainly controlled by the calcareous ballasts besides the primary productivity of the surface water. The advection may be another important factor affecting the flux in the seamount area. The combination of settled matters rich in foraminiferal tests with topography and currents may be the reason for regulating the local abundance of benthos on seamounts. Our results will fill in the knowledge gap of sedimentation flux, improve the understanding of ecosystem in Niulang Guyot area, and eventually provide data support for the optimization of regional ecological modeling.  相似文献   

10.
The distributions of C, Al, Si, P, Cr, Mn, Fe, Ni, Cu, Zn and Pb in suspended and settling particulate matter from Puget Sound were studied to investigate the processes affecting the uptake of trace metals by particulate phases. Particulate material was collected by water filtration procedures and sequentially-sampling sediment traps during approximately bimonthly surveys from December 1980 through December 1981 at a station located in the center of the main basin of Puget Sound. The samples were selectively extracted for trace metals associated with oxide, organic, and residual phases and analysed by graphite furnace atomic absorption spectrophotometry and X-ray energy spectrometry. The results show that for Mn, Fe, Zn and Pb, residual and oxide phases were the most important phases controlling the vertical flux; whereas residual and organic phases controlled the vertical flux of Cu. The average annual flux data were used along with dissolved metal profiles to compute scavenging residence times for several trace metals in Puget Sound. Relatively short scavenging residence times (i.e. < 30 days) were calculated for those metals that were significantly enriched in oxide phases, such as Fe, Mn and Pb. In contrast, longer scavenging residence times (> 100 days) were calculated for metals enriched in organic phases, such as Cu.  相似文献   

11.
A variety of measures of organic matter concentration and quality were made on samples collected from the top few mm of intertidal mudflat sediment over the course of a year, in order to assess the relative importance of biological and sedimentological influences on sedimentary organic matter. Winter and summer were times of relatively fine-grained sediment accumulation, caused by biological deposition or stabilization processes and resulting in higher organic matter concentrations. Stable carbon isotope and Br:C ratios indicated a planktonic source of bulk organic matter. Ratios of organic carbon to specific surface area of the sediments were consistent with an organic monolayer coverage of sediment grains. Correction for changing grain size during the year showed no change in the organic concentration per unit surface area, in spite of organic matter inputs by in situ primary production, buildup of heterotroph biomass and mucus coatings, and biodeposition of organic-rich seston. There were also no indications of changes in bulk organic quality, measured as hydrolyzable carbohydrates and amino acids, in response to these biological processes. It is concluded that biological processes on a seasonal time scale affect the bulk organic matter of these sediments via a modulation of grain size rather than creation or decay of organic matter.  相似文献   

12.
Fluxes of amino acids and hexosamines to the deep South China Sea   总被引:2,自引:0,他引:2  
Settling particles collected by sediment traps deployed between 1987 and 1999 in the northern, central and southwestern South China Sea (SCS) were analysed to study seasonal, interannual and spatial variations in the composition and flux of labile particulate matter. Results were combined with remote-sensing and surface-sediment data in order to describe the factors controlling the preservation of organic matter en route from the upper ocean to the seafloor. Organic carbon, amino acid and hexosamine fluxes generally follow the fluxes of total particulate matter, with maxima during the SW and NE monsoon periods. During non-El Niño conditions spectral amino acid distributions show that degradation of organic matter in the water column decreases as the flux rates increase. This is suggested to be the combined result of enhanced primary productivity, greater input of lithogenics serving as ballast to increase settling rates, and sorption of labile components to clay minerals. During El Niño conditions, in contrast, the degree of organic matter degradation is at very high and comparable levels at all trap sites. Flux component seasonality is strongly reduced except for the coastal upwelling areas, particularly off central Vietnam, which show significantly higher fluxes of organic carbon and lithogenic matter as compared to the open SCS. This suggests that the fluxes are affected by lateral advection of reworked organic matter from riverine sources or resuspended sediments from the nearby shelf/slope. Comparison of the measured organic carbon fluxes in 1200 m depth with those accumulating in surface sediments results in a more than 80% loss of organic matter before final burial in the sediments. The degree of organic matter preservation in the surface sediments of the deep SCS is distinctly lower than in other monsoonal oceans. This may be due to varying lithogenic input and almost complete dissolution of protective biogenic mineral matrices at greater water depth.  相似文献   

13.
The biogeochemistry of particulate organic matter was studied in the Great Ouse estuary draining to the North Sea embayement known as the Wash from March 1990 to January 1991. Eleven locations were sampled monthly on a 50 km transect across the shallow estuary from the tidal weir to the middle of the Wash. Particulate organic carbon (POC) and total carbohydrate, protein and lipid analyses were combined with the determination of stable carbon isotopes. δ13C often increased from −30‰ in the river to −22‰ in the tidal freshwater reach. The mixing zone between fresh and marine tidal waters displayed only a slight increase in δ13C to −19‰. The change in δ13C values in the freshwater tidal reach demonstrated that mixing of riverborne and marine suspended POC was not the only process affecting the carbon stable isotope composition. Complementary sources, interfering considerably with the two end-member sources, may be identified as autocthonous primary production and resuspension of sediment that may be transported upstream. The respective importance of these sources is subject to seasonal variation. From March to August, high concentrations in carbohydrate and protein through the whole estuary indicate that despite turbidity significant primary production occurred. The proportional importance of the uncharacterized fraction of POC, which is considered as complex organic matter, was high from September to January and low from March to August. During most of the year, the biochemical compositions of particulate organic matter in the turbidity maximum and the rest of the estuary were similar. This contradicted the principle that owing to the long residence times of particles degradation processes largely dominate the production processes within the turbidity maximum. The occurence of significant in situ production in such shallow water estuaries may partially compensate for the degradation of suspended particulate organics, resulting in a complex relationship between the biogeochemical cycling and the fate of nutrients.  相似文献   

14.
The organic matter (OM) pool has been studied in two sub-arctic north Norwegian fjords, Balsfjord and Ullsfjord, in July 2001 and June 2003. Besides general OM parameters such as dissolved organic carbon (DOC), particulate organic carbon and nitrogen (POC and PON), the distribution of specific compounds such as folic acid and surface active substances (SAS) was followed. The results are supported with data of salinity, temperature, and chlorophyll a (Chl a). This approach allowed assessment of the fate of the OM pool, and its distinct vertical, spatial, and seasonal variations. Fjord waters could be vertically divided into two layers: the upper mixed layer (UML), until 40 m depth, and the deep aphotic layer. Spatial variability between the two fjords is a consequence of different influences of shelf waters on the fjords. Significant enrichment of POC and PON concentrations (3–5 times), as well as those of particulate SAS and folic acid (up to 3.2 times) in the UML was recorded during the period of new production, in early June. Depletion of particulate OM in deep waters was ascribed to fast dissolution or remineralization in the UML or upper part of aphotic layer. OM in July 2001 was characterized with 15.9% higher DOC pool compared to June 2003, and had refractory properties, suggesting the fjords to be an important source of organic matter for the continental shelf ecosystem. The DOC pool in these subarctic fjords represents the major component of the OM pool. The DOC concentrations in fjords are lower than those in previously studied warmer seas (e.g. the Adriatic Sea), whereas the concentrations of folic acid and SAS are comparable to those in the Adriatic Sea.  相似文献   

15.
Particular features of the distribution of the transparency and particulate matter content, their variability, and their interdependence in the surface water layer (0–5 m) over the northwestern shelf and in the adjacent abyssal part of the Black Sea in the summer were considered on the basis of long-term simultaneous optical, biological, and hydrological observations (1979–1993). In the shelf regions with different river discharges and in the waters of the open part of the sea, the distributions of the transparency, the total particulate matter, and its organic components (organic carbon, nitrogen, and chlorophyll a), as well as the relative content of particulate organic carbon in the total amount of the particulate matter and the content of chlorophyll a in the particulate organic carbon, were considered. The distributions of the transparency and particulate matter and their dependence on the water dynamics are in good agreement. It was demonstrated that extreme anthropogenic eutrophication influences the western and northern coastal shelf areas. The water transparency and particulate organic matter distributions in the central shelf area subjected to the influence of transformed river water and the water properties of the southern part of the shelf, which is influenced by the waters of the open sea, were determined according to the particular structure of the phytoplankton, its abundance, and the processes of its production and destruction.  相似文献   

16.
Total suspended matter was collected along the Yangtze River (Changjiang) and in the East China Sea in April to May and in September 2003, respectively, to study origin and fate of particulate organic nitrogen. Concentrations of particulate organic carbon (POC), nitrogen (PN) and hydrolyzable particulate amino acids (PAA; d- and l-enantiomers) were higher in the Yangtze Estuary than in the river and decreased offshore towards the shelf edge. In the coastal area, higher values of PAA were observed in the surface layer than in the bottom water. Stable carbon isotope ratios (δ13C) of POC increased from − 24.4‰ in the river to values around − 21‰ on the East China Sea Shelf. Dominant amino acids were aspartic acid + aspartine (Asx), glutamic acid + glutamine (Glx), glycine, alanine and serine. The proportions of Asx, Glx and isoleucine were higher in the marine than in the riverine samples contrary to the distributions of glycine, alanine, threonine and arginine. The proportions of d-amino acids were highest in the riverine suspended organic matter (6% of PAA) decreasing towards the shelf edge (1.5% of PAA). d-arginine, not reported in natural aquatic samples so far, was the most abundant d-amino acid in the river. The amino acid composition of the particulate organic matter (POM) in the Yangtze River indicates an advanced stage of degradation of POM. Highly degraded organic matter from soils is probably a main source of POM in the Yangtze River, but the relatively high δ13C values and low C/N ratios (7.7 ± 1.6) also indicate contribution from anthropogenic sources. The degraded riverine material was a dominant organic matter source in the estuary, where aquatic primary production had only a small overall contribution. In the East China Sea, gradual settling of riverine organic matter and the addition of fresher phytoplankton impacted the amino acid composition and δ13C values, and on the outer shelf relatively fresh phytoplankton-derived organic matter dominated.  相似文献   

17.
As a part of studies on the production of dissolved and particulate organic matter in the decomposition of various biological materials, observations were also made on the chemosynthetic microbial process of nitrification. During the oxidation of ammonia to nitrate, hydroxylamine was detected and it seemed to be an unstable intermediate compound in the first phase of marine nitrification.  相似文献   

18.
The temporal and spatial distribution of total and organic particulate matter is investigated in the Bideford River estuary. Particulate matter is homogenously distributed in both the water column and the surface sediment, due to high rates of resuspension and lateral transport. The measured mean sedimentation rate for the estuary is 183·5 g of particulate matter m?2 day?1, of which more than half is due to resuspension.The surface sediment of the estuary is quantitatively the dominant reservoir of organic matter, with an average of 902·5 g of particulate organic carbon (POC) m?2 and 119·5 g of particulate organic nitrogen (PON) m?2. Per unit surface area, the sediment contains 450 times more POC and 400 times more PON than the water column. Terrestrial erosion contributes high levels of particulate matter, both organic and inorganic, to the estuary from the surrounding watershed. Low rates of sediment export from the estuary result in the accumulation of the terrigenous material. The allochthonous input of terrigenous organic matter masks any relationship between the indigenous plant biomass and the organic matter.In the water column, a direct correlation exists between the organic matter, i.e. POC and PON, concentration and the phytoplankton biomass as measured by the plant pigments. Resuspension is responsible for the residual organic matter in the water column unaccounted for by the phytoplankton biomass.The particulate content of the water column and the surface sediment of the estuary is compared to that of the adjacent bay. Water-borne particulate matter is exported from the estuary to the bay, so that no significant differences in concentration are noted. The estuarine sediment, however, is five to six times richer in organic and silt-clay content than the bay sediment. Since sediment flux out of the estuary is restricted, the allochthonous contribution of terrigenous particulate matter to the bay sediment is minor, and the organic content of the bay sediment is directly correlated to the autochthonous plant biomass.  相似文献   

19.
Prompted by recent data analyses suggesting that the flux of particulate organic carbon sinking into deep waters is determined by fluxes of mineral ballasts, we undertook a study of the relationships among organic matter (OM), calcium carbonate, opal, lithogenic material, and excess aluminum fluxes as part of the MedFlux project. We measured fluxes of particulate components during Spring and Summer of 2003, and Spring of 2005, using a swimmer-excluding sediment trap design capable of measuring fluxes both in a time-series (TS) mode and in a configuration for obtaining particle settling velocity (SV) profiles. On the basis of these studies, we suggest that distinct OM–ballast associations observed in particles sinking at a depth of 200 m imply that the mechanistic basis of the organic matter–ballast association is set in the upper water column above the Twilight Zone, and that the importance of different ballast types follows the seasonal succession of phytoplankton. As in other studies, carbonate appears to enhance the flux of organic matter over opal. Particles must be at least half organic matter before their settling velocity is affected by ballast concentration. This lack of change in ballast composition with SV in particles with <40% OM content suggests that particle SV reaches a maximum because of the increasing importance of inertial drag. Relative amounts of OM and opal decrease with depth due to decomposition and dissolution; carbonates and lithogenic material contribute about the same amount to total mass, or increase slightly, throughout the water column. The high proportion of excess Al cannot be explained by its incorporation into diatom opal or reverse weathering, so Al is most likely adsorbed to particulate oxides. On shorter time scales, dust appears to increase particle flux through its role in aggregation rather than by nutrient inputs enhancing productivity. We suggest that the role of dust as a catalyst in particle formation may be a central mechanism in flux formation in this region, particularly when zooplankton fecal pellet production is low.  相似文献   

20.
The distribution of the natural radionuclide 210Po in the water column along a horizontal transect of the continental shelf, slope and deep basin regions of the East Sea (Sea of Japan), a marginal sea of the Northwest Pacific Ocean, was investigated, and its behavior is described here. The settling fluxes of particulate 210Po in the deep basin along with 210Pb, 234Th and biogenic matter were also determined. 210Po inventories in the water column were observed to decrease from winter to summer in all stations, probably due to increased influx of 210Po-poor Kuroshio Water of the Northwest Pacific Ocean during summer. Vertical profiles of dissolved and particulate 210Po along with the settling fluxes of particulate 210Po in the deep basin station have enabled us to evaluate temporal variations and residence times of 210Po. In the slope and basin, activities of dissolved 210Po generally decreased from the surface to the bottom water, with maximum activity just below the subsurface chlorophyll a maximum at 50–75 m depth in spring and summer. These subsurface peaks of dissolved 210Po activity were attributed to the release of 210Po from the decomposition of 210Po-laden biogenic particulate organic matter. In the deep basin, despite the decrease in total mass flux, the sinking flux of particulate 210Po was higher in the deeper trap (2000 m) than in the shallower one (1000 m), probably due to scavenging of dissolved 210Po from the water column during particle descent and/or break-down of 210Po-depleted particulate matter between 1,000 m and 2,000 m depths. In general, the ratios of the particulate phase to the dissolved phase of 210Po (Kd) increased with depth in the slope and basin stations. 210Po removal from the water column appears to depend on the primary productivity in the upper waters. There is an inverse relationship between Kd and suspended particulate matter (SPM) concentration in the water column. From the 210Po activity/chlorophyll a concentration ratios, it appears that sinking particles arriving at 1000 m depth were similar to those in the surface waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号