首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six synthetic NaScSi2O6–CaNiSi2O6 pyroxenes were studied by optical absorption spectroscopy. Five of them of intermediate (Na1−x , Ca x )(Sc1−x , Ni x )Si2O6 compositions show spectra typical of Ni2+ in octahedral coordination, more precise Ni2+ at the M1 site of the pyroxene structure. The common feature of all spectra is three broad absorption bands with maxima around 8,000, 13,000 and 24,000 cm−1 assigned to 3 A 2g → 3 T 2g, 3 A 2g → 3 T 1g and →3 T 1g (3 P) electronic spin-allowed transitions of VINi2+. A weak narrow peak at ∼14,400 cm−1 is assigned to the spin-forbidden 3 A 2g → 1 T 2g (1 D) transition of Ni2+. Under pressure the spin-allowed bands shift to higher energies and change in intensity. The octahedral compression modulus, calculated from the shift of the 3 A 2g → 3 T 2g band in the (Na0.7Ca0.3)(Sc0.7Ni0.3)Si2O6 pyroxene is evaluated as 85±20 GPa. The Racah parameter B of Ni2+(M1) is found gradually changing from ∼919 cm−1 at ambient pressure to ∼890 cm−1 at 6.18 GPa. The Ni end-member pyroxene [(Ca0.93 Ni0.07)NiSi2O6] has a spectrum different from all others. In addition to the above mentioned bands of Ni2+(M1) it displays several new relatively intense and broad extra bands, which were attributed to electronic transitions of Ni2+ at the M2 site. In difference to CaO8 polyhedron geometry of an eightfold coordination, Ni2+(M2)O8 polyhedra are assumed to be relatively large distorted octahedra. Due to different distortions and different compressibilities of the M1 and M2 sites the Ni2+(M1)- and Ni2+(M2)-bands display rather different pressure-induced behaviors, becoming more resolved in the high-pressure spectra than in that measured at atmospheric pressure. The octahedral compression modulus of Ni2+(M1) in this end-member pyroxene is evaluated as 150 ± 25 GPa, which is noticeably larger than in Ni0.3 pyroxene. This is due to a smaller size and, thus, a stiffer character of Ni2+(M1)O6 octahedron in the (Ca0.93Ni0.07)NiSi2O6 pyroxene compared to (Na0.7Ca0.3)(Sc0.7Ni0.3)Si2O6.
Monika Koch-MüllerEmail:
  相似文献   

2.
In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch–Murnaghan equation of state to the P–V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0′ = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.  相似文献   

3.
Clinopyroxenes along the solid solution series hedenbergite (CaFeSi2O6)–petedunnite (CaZnSi2O6) were synthesized under hydrothermal conditions and different oxygen fugacities at temperatures of 700 to 1200 °C and pressures of 0.2 to 2.5 GPa. Properties were determined by means of X-ray diffraction, electron microprobe analysis and 57Fe Mössbauer spectroscopy at 298 K. Unit-cell parameters display a linear dependency with changing composition. Parameters a0 and b0 exhibit a linear decrease with increasing Zn content while the monoclinic angle increases linearly. Parameter c0 is not affected by composition and remains constant at a value of 5.248 Å. The molar volume can be described according to the equation Vmol (ccm mol–1)=33.963(16)–0.544(31)*Zn pfu. The isomer shifts of ferrous iron on the octahedral M1 site in hedenbergite are not affected by composition along the hedenbergite–petedunnite solid solution series and remain constant at an average value of 1.18 mm s–1. Quadrupole splittings of Fe2+ on the M1 are, however, strongly affected by composition, and they decrease linearly with increasing petedunnite component in hedenbergite, ranging from 2.25 mm s–1 for pure hedenbergite end member to 1.99 mm s–1 for a solid solution containing 84 mole% petedunnite. The half-widths of intermediate solid solutions vary between 0.26 and 0.33 mm s–1, indicating, in accordance with the microprobe analyses and X-ray diffraction, that samples are homogeneous and well-crystallized. The data from this study demonstrate that the crystallinity of hedenbergitic clinopyroxenes can be improved by using oxide mixtures as starting materials. Crystal sizes for intermediate compositions range up to 70 m, suitable for standard single-crystal X-ray analysis.This paper is dedicated to Prof. Dr. Georg Amthauer, Salzburg, on occasion of his 60th birthday  相似文献   

4.
The pseudo-binary system CaMgSi2O6-KAlSi2O6, modeling the potassium-bearing clinopyroxene (KCpx) solid solution, has been studied at 7 GPa and 1,100–1,650 °C. The KCpx is a liquidus phase of the system up to 60 mol% of KAlSi2O6. At higher content of KAlSi2O6 in the system, grossular-rich garnet becomes a liquidus phase. Above 75 mol% of KAlSi2O6 in the system, KCpx is unstable at the solidus as well, and garnet coexists with kalsilite, Si-wadeite and kyanite. No coexistence of KCpx with kyanite was observed. Above the solidus, KAlSi2O6 content of the KCpx coexisting with melt increases with decreasing temperature. Near the solidus of the system (about 1,250 °C) KCpx contains up to 5.6 wt% of K2O, i.e. about 22–26 mol% of KAlSi2O6. Such high concentration of potassium in KCpx is presumably the maximal content of KAlSi2O6 in the Fe-free clinopyroxene at 7 GPa. In addition to the major substitution MgM1C2Al1K2, the KCpx solid solution contains Ca-Eskola and only minor Ca-Tschermack components. Our experimental results indicate that the natural assemblage KCpx+grossular-rich garnet might be a product of crystallization of the ultra-potassic SiO2-rich alumino-silicate mantle melts (>200 km).Editorial responsibility: J. Hoefs  相似文献   

5.
The specific heat capacity (C p) of six variably hydrated (~3.5 wt% H2O) iron-bearing Etna trachybasaltic glasses and liquids has been measured using differential scanning calorimetry from room temperature across the glass transition region. These data are compared to heat capacity measurements on thirteen melt compositions in the iron-free anorthite (An)–diopside (Di) system over a similar range of H2O contents. These data extend considerably the published C p measurements for hydrous melts and glasses. The results for the Etna trachybasalts show nonlinear variations in, both, the heat capacity of the glass at the onset of the glass transition (i.e., C p g ) and the fully relaxed liquid (i.e., C p l ) with increasing H2O content. Similarly, the “configurational heat capacity” (i.e., C p c  = C p l  ? C p g ) varies nonlinearly with H2O content. The An–Di hydrous compositions investigated show similar trends, with C p values varying as a function of melt composition and H2O content. The results show that values in hydrous C p g , C p l and C p c in the depolymerized glasses and liquids are substantially different from those observed for more polymerized hydrous albitic, leucogranitic, trachytic and phonolitic multicomponent compositions previously investigated. Polymerized melts have lower C p l and C p c and higher C p g with respect to more depolymerized compositions. The covariation between C p values and the degree of polymerization in glasses and melts is well described in terms of SMhydrous and NBO/T hydrous. Values of C p c increase sharply with increasing depolymerization up to SMhydrous ~ 30–35 mol% (NBO/T hydrous ~ 0.5) and then stabilize to an almost constant value. The partial molar heat capacity of H2O for both glasses (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{g}} \)) and liquids (\( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \)) appears to be independent of composition and, assuming ideal mixing, we obtain a value for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) of 79 J mol?1 K?1. However, we note that a range of values for \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \) (i.e., ~78–87 J mol?1 K?1) proposed by previous workers will reproduce the extended data to within experimental uncertainty. Our analysis suggests that more data are required in order to ascribe a compositional dependence (i.e., nonideal mixing) to \( C_{{{\text{p}}\;{\text{H}}_{2} {\text{O}}}}^{\text{l}} \).  相似文献   

6.
Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5–Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg–Fe silicates. Multi-anvil experiments were performed at 11–20 GPa and 1100–1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least ~?1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot?=?~?0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+?+?[6]Mg2+?=?2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential “water-storing” mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298?=???1981.5 kJ mol??1. Solid solution is complete across the Fe4O5–Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg–Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.  相似文献   

7.
The influence on the structure of Fe2+ Mg substitution was studied in synthetic single crystals belonging to the MgCr2O4–FeCr2O4 series produced by flux growth at 900–1200 °C in controlled atmosphere. Samples were analyzed by single-crystal X-ray diffraction, electron microprobe analyses, optical absorption-, infrared- and Mössbauer spectroscopy. The Mössbauer data show that iron occurs almost exclusively as IVFe2+. Only minor Fe3+ (<0.005 apfu) was observed in samples with very low total Fe. Optical absorption spectra show that chromium with few exceptions is present as a trivalent cation at the octahedral site. Additional absorption bands attributable to Cr2+ and Cr3+ at the tetrahedral site are evident in spectra of end-member magnesiochromite and solid-solution crystals with low ferrous contents. Structural parameters a0, u and T–O increase with chromite content, while the M–O bond distance remains nearly constant, with an average value equal to 1.995(1) Å corresponding to the Cr3+ octahedral bond distance. The ideal trend between cell parameter, T–O bond length and Fe2+ content (apfu) is described by the following linear relations: a0=8.3325(5) + 0.0443(8)Fe2+ (Å) and T–O=1.9645(6) + 0.033(1)Fe2+ (Å) Consequently, Fe2+ and Mg tetrahedral bond lengths are equal to 1.998(1) Å and 1.965(1) Å, respectively.  相似文献   

8.
Synthetic ringwoodite γ-(Mg1?x Fe x )2SiO4 of 0.4 ≤ x ≤ 1.0 compositions and variously colored micro-grains of natural ringwoodite in shock metamorphism veins of thin sections of two S6-type chondrites were studied by means of microprobe analysis, TEM and optical absorption spectroscopy. Three synthetic samples were studied in addition with Mössbauer spectroscopy. The Mössbauer spectra consist of two doublets caused by VIFe2+ and VIFe3+, with IS and QS parameters close to those established elsewhere (e.g., O’Neill et al. in Am Mineral 78:456–460, 1993). The Fe3+/Fetotal ratio evaluated by curve resolution of the spectra, ranges from 0.04 to 0.1. Optical absorption spectra of all synthetic samples studied are qualitatively very similar as they are directly related to the iron content. They differ mostly in the intensity of the observed absorption features. The spectra consist of a very strong high-energy absorption edge and a series of absorption bands of different width and intensity. The three strongest and broadest absorptions of them are attributed to splitting of electronic spin-allowed 5 T 2g → 5 E g transitions of VIFe2+ and intervalence charge-transfer (IVCT) transition between ferrous and ferric ions in adjacent octahedral sites of the ringwoodite structure. The spin-allowed bands at ca. 8,000 and 11,500 cm?1 weakly depend on temperature, whilst the Fe2+/Fe3+ IVCT band at ~16,400 cm?1 displays very strong temperature dependence: i.e., with increasing temperature it decreases and practically disappears at about 497 K, a behavior typical for bands of this type. With increasing pressure the absorption edge shifts to lower energies while the spin-allowed bands shift to higher energy and strongly decreases in intensity. The IVCT band also strongly weakens and vanishes at about 9 GPa. We assigned this effect to pressure-induced reduction of Fe3+ in ringwoodite. By analogy with synthetic samples three broad bands in spectra of natural (meteoritic) blue ringwoodite are assigned to electronic spin-allowed transitions of VIFe2+ (the bands at ~8,600 and ~12,700 cm?1) and Fe2+/Fe3+ IVCT transition (~18,100 cm?1), respectively. Spectra of colorless ringwoodite of the same composition consist of a single broad band at ca. 12,000 cm?1. It is assumed that such ringwoodite grains are inverse (Fe, Mg)2SiO4-spinels and that the single band is caused by the split spin-allowed 5 E → 5 T 2 transition of IVFe2+. Ringwoodite of intermediate color variations between dark-blue and colorless are assumed to be partly inversed ringwoodite. No glassy material between the grain boundaries in the natural colored ringwoodite aggregates was found in our samples and disprove the cause of the coloration to be due to light scattering effect (Lingemann and Stöffler in Lunar Planet Sci 29(1308), 1998).  相似文献   

9.
Attikaite, a new mineral species, has been found together with arsenocrandalite, arsenogoyazite, conichalcite, olivenite, philipsbornite, azurite, malachite, carminite, beudantite, goethite, quartz, and allophane at the Christina Mine No. 132, Kamareza, Lavrion District, Attiki Prefecture (Attika), Greece. The mineral is named after the type locality. It forms spheroidal segregations (up to 0.3 mm in diameter) consisting of thin flexible crystals up to 3 × 20 × 80 μm in size. Its color is light blue to greenish blue, with a pale blue streak. The Mohs’ hardness is 2 to 2.5. The cleavage is eminent mica-like parallel to {001}. The density is 3.2(2) g/cm3 (measured in heavy liquids) and 3.356 g/cm3 (calculated). The wave numbers of the absorption bands in the infrared spectrum of attikaite are (cm?1; sh is shoulder; w is a weak band): 3525sh, 3425, 3180, 1642, 1120w, 1070w, 1035w, 900sh, 874, 833, 820, 690w, 645w, 600sh, 555, 486, 458, and 397. Attikaite is optically biaxial, negative, α = 1.642(2), β = γ = 1.644(2) (X = c) 2V means = 10(8)°, and 2V calc = 0°. The new mineral is microscopically colorless and nonpleochroic. The chemical composition (electron microprobe, average over 4 point analyses, wt %) is: 0.17 MgO, 17.48 CaO, 0.12 FeO, 16.28 CuO, 10.61 Al2O3, 0.89 P2O5, 45.45 As2O5, 1.39 SO3, and H2O (by difference) 7.61, where the total is 100.00. The empirical formula calculated on the basis of (O,OH,H2O)22 is: Ca2.94Cu 1.93 2+ Al1.97Mg0.04Fe 0.02 2+ [(As3.74S0.16P0.12)Σ4.02O16.08](OH)3.87 · 2.05H2 O. The simplified formula is Ca3Cu2Al2(AsO4)4(OH)4 · 2H2O. Attikaite is orthorhombic, space group Pban, Pbam or Pba2; the unit-cell dimensions are a = 10.01(1), b = 8.199(5), c = 22.78(1) Å, V = 1870(3) Å3, and Z = 4. In the result of the ignition of attikaite for 30 to 35 min at 128–140°, the H2O bands in the IR spectrum disappear, while the OH-group band is not modified; the weight loss is 4.3%, which approximately corresponds to two H2O molecules per formula; and parameter c decreases from 22.78 to 18.77 Å. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %)((hkl)] are: 22.8(100)(001), 11.36(60)(002), 5.01(90)(200), 3.38(5)(123, 205), 2.780(70)(026), 2.682(30)(126), 2.503(50)(400), 2.292(20)(404). The type material of attikaite is deposited in the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. The registration number is 3435/1.  相似文献   

10.
11.
Synthesis experiments in the system MgAl2O4–MgFe2O4 [MgAl2–xFexO4 (0 x 2)] were carried out using a PbF2 flux. The crystalline products synthesized in the compositional range of 0.6 <x 1.2 consisted of two spinel phases, whereas those synthesized in the compositional ranges of 0.0 x 0.6 and 1.2 < x 2.0 crystallized as single spinel phases. Structure refinements of the spinel single crystals, which grew in the ranges of 0.0 x 0.6 and 1.2 < x 2.0, show that the degree of randomness of cation distribution between A and B sites increases as x approaches the two-phase region. This means that the degree of the size mismatch among Mg2+, Fe3+ and Al3+occupying each equivalent mixing site increases as x approaches the two-phase region. Consequently, if the coexistence of two spinels observed in the intermediate compositions reveals the existence of a miscibility gap at low temperatures, this increase in the degree of the size mismatch among the three cations is suggested as a factor of energetic destabilization to form the miscibility gap.  相似文献   

12.
DC and AC electrical conductivities were measured on samples of two different crystals of the mineral aegirine (NaFeSi2O6) parallel () and perpendicular () to the [001] direction of the clinopyroxene structure between 200 and 600 K. Impedance spectroscopy was applied (20 Hz–1 MHz) and the bulk DC conductivity DC was determined by extrapolating AC data to zero frequency. In both directions, the log DC – 1/T curves bend slightly. In the high- and low-temperature limits, differential activation energies were derived for measurements [001] of EA 0.45 and 0.35 eV, respectively, and the numbers [001] are very similar. The value of DC [001] with DC(300 K) 2.0 × 10–6 –1cm–1 is by a factor of 2–10 above that measured [001], depending on temperature, which means anisotropic charge transport. Below 350 K, the AC conductivity () (/2=frequency) is enhanced relative to DC for both directions with an increasing difference for rising frequencies on lowering the temperature. An approximate power law for () is noted at higher frequencies and low temperatures with () s, which is frequently observed on amorphous and disordered semiconductors. Scaling of () data is possible with reference to DC, which results in a quasi-universal curve for different temperatures. An attempt was made to discuss DC and AC results in the light of theoretical models of hopping charge transport and of a possible Fe2+ Fe3+ electron hopping mechanism. The thermopower (Seebeck effect) in the temperature range 360 K < T <770 K is negative in both directions. There is a linear – 1/T relationship above 400 K with activation energy E 0.030 eV [001] and 0.070 eV [001]. 57Fe Mössbauer spectroscopy was applied to detect Fe2+ in addition to the dominating concentration of Fe3+.  相似文献   

13.
The solubility of Gd2Ti2O7 ceramic in acidic solutions (HCl and HClO4) was studied at 250°C and saturation vapor pressure within pH 2.5–5.2. The dissolution process occurs mainly via two reactions: 0.5 Gd2Ti2O7(cr) + 3H+ = Gd3+ + TiO2(cr) + 1.5 H2O at pH < 3 and 0.5Gd2Ti2O7(cr) + H+ + 0.5H2O = Gd(OH) 2 + TiO2(cr) at pH 3–5. The thermodynamic equilibrium constants were calculated at the 0.95 confidence level as log K (1) o = 4.12 ± 0.47; = ?0.97 ± 0.16 at 250°C. It was shown that Gd3+ undergoes hydrolysis in solutions with pH > 3, and the species Gd(OH) 2 + dominates up to at least pH 5. At pH < 3, Gd occurs in solutions as Gd3+. The second constant of Gd3+ hydrolysis was determined at 250°C as K o = ?5.09 ± 0.5, and the thermodynamic characteristics of the initial Gd2Ti2O7 solid phase were determined: S 298.15 o = 251.4 J/(mol K) and ΔfG 298.15 o = ?3630 ± 10 kJ/mol.  相似文献   

14.
A new pyroxene with formula (Na0.86Mg0.14)(Mg0.57Ti0.43)Si2O6, synthesized in a high-pressure toroidal ‘anvil-with-hole’ apparatus at P = 7 GPa and T = 1700 °C, was characterized by X-ray single-crystal diffraction and Raman spectroscopy. The compound was found to be monoclinic (R1 = 2.56 %), space group C2/c, with lattice parameters a = 9.687(2), b = 8.814(1), c = 5.290(1) Å, β = 107.853(2)°, V = 430.08(1) Å3. The coexistence of Mg and Ti4+ at the M1 site does not induce strong modifications either to the M1 site or to the adjacent M2 site. The Raman spectrum of synthetic Na–Ti-pyroxene was obtained for the first time and compared with that of Mg2Si2O6 (with very low concentrations of Na and Ti). The structural characterization of the Na–Ti–Mg-pyroxene is important, because the study of its thermodynamic constants provides new constraints on thermobarometry of the upper mantle assemblages.  相似文献   

15.
The heat capacity of eskolaite Cr2O3(c) was determined by adiabatic vacuum calorimetry at 11.99–355.83 K and by differential calorimetry at 320–480 K. Experimental data of the authors and data compiled from the literature were applied to calculate the heat capacity, entropy, and the enthalpy change of Cr2O3 within the temperature range of 0–1800 K. These functions have the following values at 298.15 K: C p 0 (298.15) = 121.5 ± 0.2 J K−1mol−1, S 0(298.15) = 80.95 ± 0.14 J K−1mol−1, and H 0(298.15)-H 0(0) = 15.30±0.02 kJ mol−1. Data were obtained on the transitions from the antiferromagnetic to paramagnetic states at 228–457 K; it was determined that this transition has the following parameters: Neel temperature T N = 307 K, Δ tr S = 6.11 ± 0.12 J K−1mol−1 and δ tr H = 1.87 ± 0.04 kJ mol−1.  相似文献   

16.
The solubility of chromium in chlorite as a function of pressure, temperature, and bulk composition was investigated in the system Cr2O3–MgO–Al2O3–SiO2–H2O, and its effect on phase relations evaluated. Three different compositions with X Cr = Cr/(Cr + Al) = 0.075, 0.25, and 0.5 respectively, were investigated at 1.5–6.5 GPa, 650–900 °C. Cr-chlorite only occurs in the bulk composition with X Cr = 0.075; otherwise, spinel and garnet are the major aluminous phases. In the experiments, Cr-chlorite coexists with enstatite up to 3.5 GPa, 800–850 °C, and with forsterite, pyrope, and spinel at higher pressure. At P > 5 GPa other hydrates occur: a Cr-bearing phase-HAPY (Mg2.2Al1.5Cr0.1Si1.1O6(OH)2) is stable in assemblage with pyrope, forsterite, and spinel; Mg-sursassite coexists at 6.0 GPa, 650 °C with forsterite and spinel and a new Cr-bearing phase, named 11.5 Å phase (Mg:Al:Si = 6.3:1.2:2.4) after the first diffraction peak observed in high-resolution X-ray diffraction pattern. Cr affects the stability of chlorite by shifting its breakdown reactions toward higher temperature, but Cr solubility at high pressure is reduced compared with the solubility observed in low-pressure occurrences in hydrothermal environments. Chromium partitions generally according to \(X_{\text{Cr}}^{\text{spinel}}\) ? \(X_{\text{Cr}}^{\text{opx}}\) > \(X_{\text{Cr}}^{\text{chlorite}}\) ≥ \(X_{\text{Cr}}^{\text{HAPY}}\) > \(X_{\text{Cr}}^{\text{garnet}}\). At 5 GPa, 750 °C (bulk with X Cr = 0.075) equilibrium values are \(X_{\text{Cr}}^{\text{spinel}}\) = 0.27, \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.08, \(X_{\text{Cr}}^{\text{garnet}}\) = 0.05; at 5.4 GPa, 720 °C \(X_{\text{Cr}}^{\text{spinel}}\) = 0.33, \(X_{\text{Cr}}^{\text{HAPY}}\) = 0.06, and \(X_{\text{Cr}}^{\text{garnet}}\) = 0.04; and at 3.5 GPa, 850 °C \(X_{\text{Cr}}^{\text{opx}}\) = 0.12 and \(X_{\text{Cr}}^{\text{chlorite}}\) = 0.07. Results on Cr–Al partitioning between spinel and garnet suggest that at low temperature the spinel- to garnet-peridotite transition has a negative slope of 0.5 GPa/100 °C. The formation of phase-HAPY, in assemblage with garnet and spinel, at pressures above chlorite breakdown, provides a viable mechanism to promote H2O transport in metasomatized ultramafic mélanges of subduction channels.  相似文献   

17.
Single crystals of C–Na2Si2O5 have been synthesized from the hydrothermal recrystallization of a glass. The title compound is monoclinic, space group P21/c with Z= 8 and unit-cell parameters a= 4.8521 (4)Å, b=23.9793(16)Å, c=8.1410(6)Å, β=90.15(1)° and V=947.2(2)Å3. The structure has been determined by direct methods and belongs to the group of phyllosilicates. It is based on layers of tetrahedra with elliptically six-membered rings in chair conformation. The sequence of directedness within a single ring is UDUDUD. The sheets are parallel to (010) with linking sodium cations in five- and sixfold coordination. Concerning the shape and the conformation of the rings, C–Na2Si2O5 is closely related to β-Na2Si2O5. However, both structures differ in the stacking sequences of the layers. A possible explanation for the frequently observed polysynthetic twinning of phase C is presented. In the 29Si MAS-NMR spectrum of C–Na2Si2O5 four well-resolved lines of equal intensity are observed at ?86.0, ?86.3, ?87.4, and ?88.2?ppm. The narrow range of isotropic chemical shifts reflects the great similarity of the environments of the different Si sites. This lack of pronounced differences in geometry renders a reliable assignment of the resonance lines to the individual sites on the basis of known empiric correlations and geometrical features impossible.  相似文献   

18.
Thaumasite, Ca3Si(OH)6(CO3)(SO4)12H2O, occurs as a low-temperature secondary alteration phase in mafic igneous and metamorphic rocks, and is recognized as a product and indicator of sulfate attack in Portland cement. It is also the only mineral known to contain silicon in six-coordination with hydroxyl (OH)? that is stable at ambient PT conditions. Thermal expansion of the various components of this unusual structure has been determined from single-crystal X-ray structure refinements of natural thaumasite at 130 and 298 K. No phase transitions were observed over this temperature range. Cell parameters at room temperature are: a= 11.0538(6) Å, c=10.4111(8) Å and V=1101.67(10) Å3, and were measured at intervals of about 50 K between 130 and 298 K, resulting in mean axial and volumetric coefficients of thermal expansion (×10?5K?1); α a =1.7(1), α c =2.1(2), and α V =5.6(2). Although the unit cell and VIIICaO8 polyhedra show significant positive thermal expansion over this temperature range, the silicate octahedron, sulfate tetrahedron, and carbonate group show zero or negative thermal expansion, with α V (VISiO6) = ?0.6 ± 1.1, α V (IVSO4)=?5.8 ± 1.4, and α R (C–O)= 0.0 ± 1.8 (×10?5 K?1). Most of the thermal expansion is accommodated by lengthening of the R(O...O) hydrogen bond distances by on average 5σ, although the hydrogen bonds involving hydroxyl sites on VISi expand twice as much as those on molecular water, causing the [Ca3Si(OH)6(H2O)12]4+ columns to expand in diameter more than they move apart over this temperature range. The average Si–OH bond length of the six-coordinated Si atom 〈R(VISi–OH)〉 in thaumasite is 1.783(1) Å, being about 0.02 Å (?20σ) shorter than VISi–OH in the dense hydrous magnesium silicate, phase D, MgSi2H2O6.  相似文献   

19.
The dissolution rate of minerals in silicate melts is generally assumed to be a function of the rate of mass transport of the released cations in the solvent. While this appears to be the case in moderately to highly viscous solvents, there is some evidence that the rate-controlling step may be different in very fluid, highly silica undersaturated melts such as basanites. In this study, convection-free experiments using solvent melts with silica activity from 0.185–0.56 and viscosity from 0.03–4.6 Pa s show that the dissolution rate is strongly dependent on the degree of superheating, silica activity and the viscosity of the solvent. Dissolution rates increase with increasing melt temperature and decreasing silica activity and viscosity. Quartz dissolution in melts with viscosity <0.59–1.9 Pa s and silica activity <0.47 is controlled by the rate of interface reaction as shown by the absence of steady state composition and silica saturation in the interface melts. Only in the most viscous melt with the highest silica activity is quartz dissolution controlled by the rate of diffusion in the melt and only after a long initiation time. The results of this study indicate that although a diffusion-based model may be applicable to dissolution in viscous magmas, a different approach that combines the interplay between the degree of undersaturation of the melt and its viscosity is required in very fluid melts.This revised version was published online September 2004 with a correction to Figure 8.  相似文献   

20.
Nickeltalmessite, Ca2Ni(AsO4)2 · 2H2O, a new mineral species of the fairfieldite group, has been found in association with annabergite, nickelaustinite, pecoraite, calcite, and a mineral of the chromite-manganochromite series from the dump of the Aït Ahmane Mine, Bou Azzer ore district, Morocco. The new mineral occurs as spheroidal aggregates consisting of split crystals up to 10 × 10 × 20 μm in size. Nickeltalmessite is apple green, with white streak and vitreous luster. The density measured by the volumetric method is 3.72(3) g/cm3; calculated density is 3.74 g/cm3. The new mineral is colorless under a microscope, biaxial, positive: α = 1.715(3), β = 1.720(5), γ = 1.753(3), 2V meas = 80(10)°, 2V calc = 60.4. Dispersion is not observed. The infrared spectrum is given. As a result of heating of the mineral in vacuum from 24° up to 500°C, weight loss was 8.03 wt %. The chemical composition (electron microprobe, wt %) is as follows: 25.92 CaO, 1.23 MgO, 1.08 CoO, 13.01 NiO, 52.09 As2O5; 7.8 H2O (determined by the Penfield method); the total is 101.13. The empirical formula calculated on the basis of two AsO4 groups is Ca2.04(Ni0.77Mg0.13Co0.06)Σ0.96 (AsO4)2.00 · 1.91H2O. The strongest reflections in the X-ray powder diffraction pattern [d, Å (I, %) (hkl)] are: 5.05 (27) (001) (100), 3.57 (43) (011), 3.358 (58) (110), 3.202 (100) (020), 3.099 (64) (0\(\bar 2\)1), 2.813 (60), (\(\bar 1\)21), 2.772 (68) (2\(\bar 1\)0), 1.714 (39) (\(\bar 3\)31). The unit-cell dimensions of the triclinic lattice (space group P1 or P) determined from the X-ray powder data are: a = 5.858(7), b = 7.082(12), c = 5.567(6) Å, α = 97.20(4), β = 109.11(5), γ = 109.78(5)°, V = 198.04 Å3, Z = 1. The mineral name emphasizes its chemical composition as a Ni-dominant analogue of talmessite. The type material of nickeltalmessite is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, Russia, registration number 3750/1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号