首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 892 毫秒
1.
Novaya Zemlya was covered by the eastern part of the Barents–Kara ice sheet during the glacial maximum of marine isotope stage 2 (MIS 2). We obtained 14C ages on 37 samples of mollusc shells from various sites on the islands. Most samples yielded ages in the range of 48–26 14C Ky. Such old samples are sensitive to contamination by young 14C, and therefore their reliability was assessed using replicate analyses and amino acid geochronology. The extent of aspartic acid racemization (Asp D/L) indicates that many of the 14C ages are correct, whereas some are minimum ages only. The results indicate that a substantial part of Novaya Zemlya was ice-free about 35–27 14C Kya, and probably even earlier. Corresponding shorelines up to >140 m a.s.l. indicate a large Barents–Kara ice sheet during early MIS 3. These results are consistent with findings from Svalbard and northern Russia: in both places a large MIS 4/3 Barents–Kara ice sheet is postulated to have retreated about 50 Kya, followed by an ice-free interstadial that lasted until up to ca. 25 Kya. The duration of the MIS 2 glaciation in Novaya Zemlya was calculated by applying the D/L values to a kinetic equation for Asp racemization. This indicates that the islands were ice covered for less than 3000 years if the basal temperature was 0oC, and for less than 10 000 years if it was −5oC.  相似文献   

2.
The extent of ice, thickness and dynamics of the Last Glacial Maximum (LGM) ice sheets in the Antarctic Peninsula region, as well as the pattern of subsequent deglaciation and climate development, are not well constrained in time and space. During the LGM, ice thickened considerably and expanded towards the middle–outer submarine shelves around the Antarctic Peninsula. Deglaciation was slow, occurring mainly between >14 Ky BP (14C kilo years before present) and ca. 6 Ky BP, when interglacial climate was established in the region. After a climate optimum, peaking ca. 4 - 3 Ky BP, a cooling trend started, with expanding glaciers and ice shelves. Rapid warming during the past 50 years may be causing instability to some Antarctic Peninsula ice shelves.  相似文献   

3.
 位于鄂尔多斯高原萨拉乌苏河米浪沟湾剖面是重建毛乌素沙地晚更新世以来古气候的理想地点。其末次间冰阶(MIS3)层序含4种沉积相,划分为19个沉积单元,构成9.5个风成的砂丘砂与河流相、湖相和古土壤交替的沉积旋回。主元素分析结果显示,该剖面MIS3层序中河流相、湖相和古土壤的Al2O3、TOFE、CaO、MgO、K2O、Na2O、TiO2含量明显高于古风成砂, 而SiO2则相反, 构成与沉积旋回相应的9.5个元素波动旋回。这些元素旋回指示了该地末次间冰阶至少经历了10次温湿(W事件)和9次冷干(C事件)气候波动,且可划分为MIS3e(58.90~49.50 ka BP)、MIS3d(49.50~40.70 ka BP)、MIS3c(40.70~36.90 ka BP)、MIS3b(36.90~27.00 ka BP)和MIS3a(27.00~22.30 ka BP)等5个亚段。其中, 19次冷/暖波动可与格陵兰GRIP冰芯δ18O冰段/间冰段大致对应, 5个亚段与我国古里雅冰芯和V23-81冷性浮游有孔虫数代表的北大西洋地区气候也具有较好的可比性。  相似文献   

4.
Djúpáll is a Ø90 km long by 15 km wide trough which extends from Ísafjardardjúp to the shelf break above Blosseville Basin, north of the Denmark Strait. We present 3.5 kHz seismic profiles from this trough and data from cores collected in 1996 (JM96-1232 and −1234) and five cores collected on cruise B997. We pay particular attention to B997-338 as this core recovered sediments ranging in age between 12 and 36 cal. Ky BP. This is the first such record from the Iceland continental shelf. Dating control is provided by AMS 14C dates and the occurrence of the Saksunarvatn tephra. X-radiographs of the cores enable us to quantify the input of iceberg-rafted detritus (IRD) and to describe the lithofacies. The sediment matrix is fine-grained and might represent either rain-out of suspended sediment plumes or distal turbidites. IRD is present from ca. 12 cal. Ky BP throughout the next 24 cal. Ky with some IRD-free intervals. Using sediment magnetic properties, sampled at 1 cm (ø100 yrs/sample) resolution, we provide a stacked environmental record which includes marine isotope stages 1, 2 and part of 3. The sediment magnetic properties kARM and IRM(60), and carbonate and TOC, show multi-millennia quasi-periodic cycles, but there are no obvious events coeval with the North Atlantic Heinrich events. Our data indicate that at the Last Glacial Maximum on the Vestfirdir peninsula (VP), north-west Iceland, ice did not reach the shelf break, but was probably grounded near the mouth of Ísafjardardjúp. A rapid increase in the rate of sediment accumulation suggests that deglaciation of the VP occurred mainly between 11 and 15 cal. Ky BP.  相似文献   

5.
ABSTRACT. A time-dependent model is used to investigate the interaction between climate, extent and fluctuations of Patagonian ice sheet between 45° and 48°S during the last glacial maximum (LGM) and its subsequent deglaciation. The model is applied at 2 km resolution and enables ice thickness, lithospheric response and ice deformation and sliding to interact freely and is perturbed from present day by relative changes in sea level and equilibrium line altitude (ELA). Experiments implemented to identify an LGM configuration compatible with the available empirical record, indicate that a stepped ELA lowering of 750 to 950 m is required over 15000 years to bracket the Fenix I-V suite of moraines at Lago Buenos Aires. However, 900 m of ELA lowering yields an ice sheet which best matches the Fenix V moraine (c. 23000 a BP) and Caldenius' reconstructed LGM limit for the entire modelled area. This optimum LGM experiment yields a highly dynamic, low aspect ice sheet, with a mean ice thickness of c. 1130 m drained by numerous large ice streams to the western, seaward margin and two large, fast-flowing outlet lobes to the east. Forcing this scenario into deglaciation using a re-scaled Vostok ice core record results in an ice sheet that slowly shrinks by 25% to c. 14500 a bp , after which it experiences a rapid collapse, loosing some 85% of its volume in c. 800 years. Its margins stabilize during the Antarctic Cold Reversal after which it shrinks to near present-day limits by 11 000 a bp .  相似文献   

6.
New dates for last glacial cycle in Tibetan bordering mountains and in East Asia show the glacial extent during the early/middle (MIS3-4) stage is larger than that of the late stage (MIS2) in last glacial cycle. It is asynchronous with the Northern Hemisphere ice sheets maximum and changes in oceanic circulation that predominately control global climate. In research areas, three seasonal precipitation patterns control the accumulation and ablation of glaciers. The modes of the westerlies and the East Asian mountains/islands in and along the Pacific Ocean are favorable to glacier advance with mainly winter precipitation accumulation. There was a global temperature-decreasing phase in the middle stage (MIS3b, 54-44 ka BP), when the glacier extent was larger than that in Last Glaciation Maximum due to the low temperature combined with high moisture. It is revealed that the Quaternary glaciers not only evolved with localization, but also maybe with globalization. The latest studies show a fact that the developmental characteristics of glaciers in high mountains or islands along the western Pacific Ocean are not in accord with those inland areas. Therefore, it can be concluded that glacier development exhibits regional differences. The study validates the reasonableness of the asynchronous advance theory, and ascertains that both the synchronous and asynchronous advance/retreat of glaciers existed from 30 ka BP to 10 ka BP. It is not suitable to emphasize the synchronicity between global ice-volume and glacier change.  相似文献   

7.
1 IntroductionIthas been accepted thatthe glacialextentin the early stage w as largerthan thatin the late stagein Eastern A sia during the Last G laciation and w as different from Europe and N orth A m erica(Li, 1992; Cui et al., 2000). M any scholars hav…  相似文献   

8.
The extent of the Barents-Kara Ice Sheet during the eastern Last Glacial Maximum (LGM) is not yet fully known. A detailed echo-sounding survey performed during the Boris Petrov Expedition 2001 permitted the detailed mapping of part of it. Based on the profiling results, a southern connection between the LGM Barents-Kara Ice Sheet and a local ice sheet on Taymyr Peninsula appears to be unlikely. Based on sediment core data and profiling results, most of the terrigenous river-derived material accumulated in the estuaries during late Holocene times, whereas during early Holocene times of lowered sea level major amounts were transported further offshore and accumulated on the shelf. During the post-glacial sea level rise, the main depocentre migrated southward, reaching its present position no earlier than about 6 cal. Ky BP (or 5.2 Kya). Future studies of accelerator mass spectrometry (AMS) 14C-dated sediment cores will allow a detailed reconstruction of the variability of fluvial sediment discharge and the history of glaciation in the Kara Sea during late Quaternary times.  相似文献   

9.
Late glacial palaeoceanography of Hinlopen Strait, northern Svalbard   总被引:3,自引:0,他引:3  
Timing and structure of the Late and post-glacial development of the northern Svalbard margin, together with the initial influx of Atlantic water into the Arctic Ocean are still very poorly constrained. We investigated a sediment core (NP94-51) from a high accumulation area on the continental shelf north of Hinlopen Strait with the purpose of resolving the timing and structure of the last deglaciation. Detailed analyses of ice-rafted detritus, benthic and planktonic foraminiferal fauna, diatom flora, grain size and radiocarbon dates are used to reconstruct the palaeoceanographic evolution of the area. Our results indicate that the disintegration of Hinlopen Strait ice and possibly the northern margin of the Svalbard Ice Sheet commenced between 13.7 and 13.9 14C Ky BP. Influx of subsurface Atlantic waters into the area (12.6 14C Ky BP) and the retreat of the sea ice cover, with the accompanying opening of the surface waters (10.8 14C Ky BP), happened at different times and both much later than the disintegration of the ice sheets. The transition into the Holocene shows a two-step warming.  相似文献   

10.
Non-glaciated Arctic lowlands in north-east Siberia were subjected to extensive landscape and environmental changes during the Late Quaternary. Coastal cliffs along the Arctic shelf seas expose terrestrial archives containing numerous palaeoenvironmental indicators (e.g., pollen, plant macro-fossils and mammal fossils) preserved in the permafrost. The presented sedimentological (grain size, magnetic susceptibility and biogeochemical parameters), cryolithological, geochronological (radiocarbon, accelerator mass spectrometry and infrared-stimulated luminescence), heavy mineral and palaeoecological records from Cape Mamontov Klyk record the environmental dynamics of an Arctic shelf lowland east of the Taymyr Peninsula, and thus, near the eastern edge of the Eurasian ice sheet, over the last 60 Ky. This region is also considered to be the westernmost part of Beringia, the non-glaciated landmass that lay between the Eurasian and the Laurentian ice caps during the Late Pleistocene. Several units and subunits of sand deposits, peat–sand alternations, ice-rich palaeocryosol sequences (Ice Complex) and peaty fillings of thermokarst depressions and valleys were presented. The recorded proxy data sets reflect cold stadial climate conditions between 60 and 50 Kya, moderate inderstadial conditions between 50 and 25 Kya and cold stadial conditions from 25 to 15 Kya. The Late Pleistocene to Holocene transition, including the Allerød warm period, the early to middle Holocene thermal optimum and the late Holocene cooling, are also recorded. Three phases of landscape dynamic (fluvial/alluvial, irregular slope run-off and thermokarst) were presented in a schematic model, and were subsequently correlated with the supraregional environmental history between the Early Weichselian and the Holocene.  相似文献   

11.
Quaternary glacial stratigraphy and relative sea-level changes reveal at least two glacial expansions over the Chelyuskin Peninsula, bordering the Kara Sea at about 77°N in the Russian Arctic, as indicated from tills interbedded with marine sediments, exposed in stratigraphic superposition, and from raised-beach sequences mapped to altitudes of at least up to ca. 80 m a.s.l. Chronological control is provided by accelerator mass spectrometry 14C dating, electron-spin resonance and optically stimulated luminescence geochronology. Major glaciations, followed by deglaciation and marine inundation, occurred during marine oxygen isotope stages 6–5e (MIS 6–5e) and stages MIS 5d–5c. These glacial sediments overlie marine sediments of Pliocene age, which are draped by fluvial sediment of a pre-Saalian age, thereby forming palaeovalley/basin fills in the post-Cretaceous topography. Till fabrics and glacial tectonics record expansions of local ice caps exclusively, suggesting wet-based ice cap advance, followed by cold-based regional ice-sheet expansion. Local ice caps over highland sites along the perimeter of the shallow Kara Sea, including the Byrranga Mountains and the Severnaya Zemlya archipelago, appear to have repeatedly fostered initiation of a large Kara Sea ice sheet, with the exception of the Last Glacial Maximum (MIS 2), when Kara Sea ice neither impacted the Chelyuskin Peninsula nor Severnaya Zemlya, and barely touched the northern coastal areas of the Taymyr Peninsula.  相似文献   

12.
Prediction of future Arctic climate and environmental changes, as well as associated ice-sheet behavior, requires placing present-day warming and reduced ice extent into a long-term context. Here we present a record of Holocene climate and glacier fluctuations inferred from the paleolimnology of small lakes near Istorvet ice cap in East Greenland. Calibrated radiocarbon dates of organic remains indicate deglaciation of the region before ~10,500 years BP, after which time the ice cap receded rapidly to a position similar to or less extensive than present, and lake sediments shifted from glacio-lacustrine clay to relatively organic-rich gyttja. The lack of glacio-lacustrine sediments throughout most of the record suggests that the ice cap was similar to or smaller than present throughout most of the Holocene. This restricted ice extent suggests that climate was similar to or warmer than present, in keeping with other records from Greenland that indicate a warm early and middle Holocene. Middle Holocene magnetic susceptibility oscillations, with a ~200-year frequency in one of the lakes, may relate to solar influence on local catchment processes. Following thousands of years of restricted extent, Istorvet ice cap advanced to within 365 m of its late Holocene limit at ~AD 1150. Variability in the timing of glacial and climate fluctuations, as well as of sediment organic content changes among East Greenland lacustrine records, may be a consequence of local factors, such as elevation, continentality, water depth, turbidity, and seabirds, and highlights the need for a detailed spatial array of datasets to address questions about Holocene climate change.  相似文献   

13.
Pollen and charcoal data from the Jingerwa section of the Nihewan Basin, north-central China, were used to reconstruct vegetation and climate changes during Marine Isotope Stage (MIS) 3. Mean annual precipitation changes were quantified by applying pollen-climate transfer functions. Sparse vegetation cover dominated by herbs indicates relatively dry climate between 51 and 43 cal ka BP. Between 43 and 35 cal ka BP, a Pinus-dominated forest reached its maximum extent, implying that climate was wetter than today. Severe fire episodes during that period suggest warm temperatures. Between 35 and 32 cal ka BP, forest retreat and the expansion of dryland vegetation are indicative of drier climates. Slightly wetter conditions prevailed between 32 and 29 cal ka BP, as indicated by the expansion of ferns. Our results suggest that the climate conditions in the Nihewan Basin during middle and late MIS 3 were probably wetter than today. This may have been caused by intensification of Asian monsoon circulation in response to greater insolation in June at 30°N. However, increases in summer temperatures and evaporation, triggered by peak summer insolation levels, may have led to a reduction in humidity around 35 cal ka BP.  相似文献   

14.
The ca. 13 m long sediment core PG1351, recovered in 1998 from the central part of Lake El’gygytgyn, NE Siberia, was investigated for lithostratigraphy, water content, dry bulk density (DBD), total organic carbon (TOC), total nitrogen (TN), total sulphur (TS) and biogenic silica (opal) contents, and for TOC stable isotope ratios (δ13CTOC). The event stratigraphy recorded in major differences in sediment composition match variations in regional summer insolation, thus confirming a new age model for this core, which suggests that it spans the last 250 ka BP. Four depositional units of contrasting lithological and biogeochemical composition have been distinguished, reflecting past environmental conditions associated with relatively warm, peak warm, cold and dry, and cold but more moist climate modes. A relatively warm climate, resulting in complete summer melt of the lake ice cover and seasonal mixing of the water column, prevailed during the Holocene and Marine Isotope Stages (MIS) 3, 5.1, 5.3, 6.1, 6.3, 6.5, 7.1–7.3, 7.5, 8.1 and 8.3. MIS 5.5 (Eemian) was characterized by significantly enhanced aquatic primary production and organic matter supply from the catchment, indicating peak warm conditions. During MIS 2, 5.2, 5.4, 6.2 and 6.4 the climate was cold and dry, leading to perennial lake ice cover, little regional snowfall, and a stagnant water body. A cold but more moist climate during MIS 4, 6.6, 7.4, 8.2 and 8.4 is thought to have produced more snow cover on␣the perennial ice, strongly reducing light penetration and biogenic primary production in␣the lake. While the cold–warm pattern during␣the past three glacial–interglacial cycles is probably controlled by changes in regional summer insolation, differences in the intensity of the warm phases and in the degree of aridity (changing snowfall) during cold phases likely were due to changes in atmospheric circulation patterns. This is the seventh in a series of eleven papers published in this special issue dedicated to initial studies of El'gygytgyn Crater Lake and its catchment in NE Russia. JulieBrigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

15.
通过中国第三次北极科学考察在北冰洋楚科奇海台采集的08P23孔样品的多项指标分析以及与其他孔的沉积记录综合对比,将08P23孔沉积物初步分为氧同位素3期(MIS 3)-MIS 1的沉积序列。MIS 3以来,楚科奇海台08P23孔可以识别出5个显著的冰筏碎屑(Ice-Rafted Detritus,IRD)事件,分别出现在MIS 2和MIS 3。其中,MIS 3的IRD事件中碎屑碳酸盐岩主要来自于加拿大北极群岛分布广泛的古生代碳酸盐岩露头,MIS 2的IRD事件中碎屑石英可能来源于欧亚大陆边缘。该孔大部分层位浮游有孔虫左旋厚壁新方球虫Neogloboquadrina pachyderma(sinistral)(Nps)的δ18O和δ13C都轻于表层沉积物中的平均值。MIS 3中两个褐色层中偏轻的Nps-δ18O和Nps-δ13C值是由冰融水造成;MIS 1和MIS 3灰色层中偏轻的Nps的δ18O和δ13C值指示海冰形成速率的提高,导致轻同位素卤水的生产和下沉。MIS 2的Nps的δ18O和δ13C值变化趋势相反,是因为温度急剧降低导致Nps-δ18O变重,海水冻结成冰,海气交换明显降低使得Nps-δ13C偏轻。MIS 1和MIS 3的Nps的δ18O和δ13C受到融冰水或轻同位素卤水影响导致同时偏轻。  相似文献   

16.
神农架大九湖四万年以来的植被与气候变化   总被引:3,自引:0,他引:3  
通过对大九湖6 m长连续沉积岩芯剖面(DJH-1 孔) 7 个样品的AMS14C年龄测定和151 块孢粉样品的鉴定分析, 揭示了神农架区域4 万以年来植被和气候演变。末次冰期阶段大九湖附近发育森林草地或草地-草甸植被。MIS 3 晚期, ~42-39 cal ka BP之间, 气候相对干冷, 发育森林草地;~39-31 cal ka BP 之间, 气候较为湿润, 草甸扩张并伴随低海拔阔叶树种的发育。MIS 2 阶段, 草甸组分中蒿属显著增加, 高海拔可能分布有荒漠草地, 气候极端干冷;该时期植被带垂直下降达到1000 余m, 按垂直温度递减率推算, 冰盛期阶段该区域温度下降约7℃左右。从冰消期开始, 森林植被开始扩张, 北温带、暖温带和亚热带乔木组分依次增加。约在9.4-4 cal ka BP之间, 演变为亚热带常绿阔叶落叶林, 属全新世适宜期;从约4 cal ka BP以来, 北温带阔叶和针叶树开始增加, 气候趋于凉干。通过对比区域高分辨率的洞穴石笋及高纬冰芯氧同位素记录, 表明神农架区域植被环境变化对气候变化敏感, 并记录了H1, YD气候突变事件;进一步体现出该区域气候环境演变主要与北半球太阳辐射控制的东亚夏季风强度变化有关, 且与北半球高纬气候变化一致。  相似文献   

17.
The lithology, radiocarbon chronology, granulometry, geochemistry and distribution of diatoms were investigated in three sediment cores from fresh-water Figurnoye Lake in the southern Bunger Hills, East Antarctica. Our paleolimnological data provide a record of Holocene environmental changes for this region. In the early Holocene (prior to 9.0 ± 0.5 kyr BP), warm climate conditions caused intensive melting of either the floating glacier ice mass or glaciers in the immediate lake surroundings, leading to the accumulation of terrigenous clastic sediments and limiting biogenic production in the lake. From ca. 9.0 ± 0.5 to 5.5 ± 0.5 kyr BP, highly biogenic sediments dominated by benthic mosses formed, indicating more distal glaciers or snowfields. A relatively cold and dry climate during this period caused weaker lake-water circulation and, likely, occurrence of lake ice conditions were more severe than present. The distribution of marine diatoms in the cores shows that, sometime between 8 and 5 kyr BP, limited amounts of marine water episodically penetrated to the lake, requiring a relative sea-level rise exceeding 10–11 m. During the last ca. 5.5 ± 0.5 kyr BP, sedimentation of mainly biogenic matter with a dominance of laminated microbial mats occurred in the lake under warm climatic conditions, interrupted by relative coolings: the first one around 2 kyr BP and then shortly before recent time. Between ca. 5.5 and 4 kyr BP, the drainage of numerous ice-dammed lakes took place in the southern Bunger Hills and, as a result, drier landscapes have existed here from about 4 kyr BP.  相似文献   

18.
天山阿特奥依纳克河流域冰川沉积序列   总被引:1,自引:0,他引:1  
阿特奥依纳克河位于我国天山的最西段,最大现代冰川作用中心托木尔峰的南麓。在第四纪冰期与间冰期的气候旋回中,该处留下了形态较为完整的6套冰川沉积。应用ESR测年技术 (辅以OSL测年技术) 对冰碛物及其相应的冰水沉积物进行了定年,测得6套冰碛年龄分别为7.3±0.8ka BP (OSL,冰水沙);12.3±1.2ka BP (OSL) 与15~29ka BP;46~54ka BP;56~65ka BP;155.8±15.6ka BP与234.8±23.5ka BP;453.0±45.3ka BP,测年结果表明它们分别形成于新冰期、海洋同位素阶段(MIS)2、3b、4、6、12。第三套冰碛测年结果表明该处MIS3b冰进规模较大,其规模基本上与末次盛冰期 (MIS2) 的规模相当。此处最老冰碛测年结果与我国中段天山乌鲁木齐河源高望峰冰碛的测年结果 (459.7±46ka BP与477.1ka BP) 遥相呼应,老冰碛的年龄显示我国天山西段与中段至少于MIS12进入了冰冻圈,开始发育冰川。  相似文献   

19.
The deglaciation history of Balsfjord, northern Norway, and post-glacial mass movement events were investigated. Radiocarbon dates indicate that the Balsfjord glacier retreated from the Tromsø–Lyngen moraines about 10.4 14C Ky BP. Between ca. 10.3 14C Ky BP and 9.9 14C Ky BP, deposition of a distinct end moraine–the Skjevelnes moraine–in the central part of Balsfjord occurred. The transition from glacimarine to open marine sedimentary environment took place before 9.6 14C Ky BP. Between ca. 9.5 14C Ky BP and 8.4 14C Ky BP, at least one local and three regional mass movement events occurred. After this period, no gravity flow activity is preserved in the cores. The high frequency of mass movements in the early post-glacial period is presumed to be due to fast sea level changes and/or tectonic activity induced by rapid isostatic uplift.  相似文献   

20.
Most of the last glacial maximum (LGM) glacier record west of the southern Andes (40–55° S) is today submerged under the Pacific Ocean and therefore the Archipiélago de Chiloé (42–43° S) provides an unusual opportunity to study local sediment and landform associations to help understand paleoglacial features of the former Patagonian ice sheet (PIS). In this context, this work presents the first comprehensive glacial geomorphologic mapping of the central region of the Archipiélago de Chiloé, which is located in a transitional geomorphic region between the Chilean Lake District (CLD, 39–41° S, 73° W) and northwest Patagonia (~43–48° S, 74° W). The Chilotan glacial geomorphology and sediment associations resulted from a warm‐based glacier that characterizes a typical active glacial temperate landsystem, which in central Chiloé combines deposits and landform units originated in subglacial and subaerial environments. Paleoglacial features that occur in central Chiloé are characteristic of an ice‐sheet style of glaciation, which differentiates it from a typical Alpine glacial style defined previously for the CLD. Therefore, the Archipiélago de Chiloé represents a geographical break point where the PIS became the large ice mass that occupied the Patagonian Andes during the last glacial period (Llanquihue Glaciation). A double ice‐contact slope on the east face of the Cordillera de La Costa provides evidence for the most extensive Early Llanquihue glacial advance on Isla Grande de Chiloé. The most prominent LGM advance in the area occurred at 26 000 cal yr BP, coincident with regional stadial conditions, and is defined by a big moraine along the east coast of the island.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号