首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate is an important driver of dissolved organic carbon (DOC) dynamics in boreal catchments characterized by networks of streams within forest-wetland landscape mosaics. In this paper, we assess how climate change may affect stream DOC concentrations ([DOC]) and export from boreal forest streams with a multi-model ensemble approach. First, we apply an ensemble of regional climate models (RCMs) to project soil temperatures and stream-flows. These data are then used to drive two biogeochemical models of surface water DOC: (1) The Integrated Catchment model for Carbon (INCA-C), a detailed process-based model of DOC operating at the catchment scale, and (2) The Riparian Integration Model (RIM), a simple dynamic hillslope scale model of stream [DOC]. All RCMs project a consistent increase in temperature and precipitation as well as a shift in spring runoff peaks from May to April. However, they present a considerable range of possible future runoff conditions with an ensemble median increase of 31 % between current and future (2061–2090) conditions. Both biogeochemical models perform well in describing the dynamics of present-day stream [DOC] and fluxes, but disagree in their future projections. Here, we assess possible futures in three boreal catchments representative of forest, mire and mixed landscape elements. INCA-C projects a wider range of stream [DOC] due to its temperature sensitivity, whereas RIM gives consistently larger inter-annual variation and a wider range of exports due to its sensitivity to hydrological variations. The uncertainties associated with modeling complex processes that control future DOC dynamics in boreal and temperate catchments are still the main limitation to our understanding of DOC mechanisms under changing climate conditions. Novel, currently overlooked or unknown drivers may appear that will present new challenges to modelling DOC in the future.  相似文献   

2.
土壤溶解性有机碳测定方法与应用   总被引:20,自引:0,他引:20       下载免费PDF全文
溶解性有机碳是土壤圈中一种非常活跃的化学物质,它对土壤中化学物质的溶解、吸附、解吸、迁移和毒性等行为均有显著的影响。在现代土壤研究中,出现了与溶解性有机碳相关的众多术语,分析方法也各有不同。从溶解性有机碳、水溶性有机碳、活性有机碳、易氧化碳、微生物量碳、可矿化碳不同术语的角度,概述了这类碳分析意义和测定方法,以期对土壤有机质应用研究起到积极作用。  相似文献   

3.
湿地是人类生存和发展的重要环境之一,然而城镇化在带动经济发展的同时也严重影响了湿地生态系统。本文利用城乡梯度研究方法结合湿地分布特征,设置从沈阳城市中心到城市边缘的研究样带,沿着城镇密集区(浑河)—郊区(蒲河)—乡村(卧龙湖,仙子湖)梯度带选取典型湖泊和河流湿地样地为研究对象,系统分析城镇化对湿地水体碳氮磷含量的影响。研究发现湿地水体碳氮磷含量与城乡梯度具有相关性,总碳(TC)和可溶性有机碳(DOC)含量及SUVA280值沿城镇密集区—郊区—乡村梯度带逐渐增加,即远离市中心的乡村卧龙湖湿地最高,分别为(120.68±2.34)mg/L,(41.56±6.27)mg/L和(0.35±0.10)L/(mg·m),显著高于位于四环以外乡村仙子湖湿地、流经沈阳市四环蒲河和穿越三环浑河湿地水体。湿地水体氮磷含量总体上沿着城乡梯度带呈降低趋势,但蒲河湿地水体总氮(TN)和总磷(TP)含量最高,分别为(5.35±0.19)mg/L和(1.45±0.07)mg/L,显著高于位于城镇密集区的浑河湿地水体。城镇化作用总体上增加了湿地水体铵态氮(NH4+-N)和硝态氮(NO3--N)含量,其中,横穿城镇密集区的浑河湿地水体NH4+-N含量最高,为(1.28±0.14)mg/L;NO3--N含量则是位于郊区的蒲河湿地水体最高,为(1.42±0.15) mg/L。研究结果表明城镇化改变了湿地生态系统水体碳氮磷含量,使水体DOC含量降低,小分子化合物增多,不利于DOC在水体中的累积;同时由于人类活动的加剧也使氮磷排放增加,使水体氮磷超标,导致流经城镇密集区部分的浑河和蒲河湿地NH4+-N和NO3--N含量高于乡村。未来随着城镇化的不断发展,应严加控制和合理规划,防止城镇化导致的湿地水体污染和生态系统的破坏。  相似文献   

4.
With reference to 2001–2005, the fluxes of dissolved organic matter (DOM) are analyzed in a water stream of the northern taiga subzone of continuous permafrost. Dynamics of hydroclimatic parameters is shown during a frost-free period. It is found that, in spite of a potential decrease in the DOM concentrations with the increased thickness of a seasonally thawed layer, one observes their direct dependence on the precipitation amount and part that enters the water stream. Seasonal variations in the DOM qualitative composition are determined. The basic DOM part exported from the watershed is observed during the regimes of a maximum water content (spring flooding and floods).  相似文献   

5.
基于2005年4~10月盘锦湿地芦苇群落土壤不同土层土壤碱解氮及溶解性有机碳的观测资料,分析了盘锦湿地芦苇群落土壤碱解氮与溶解性有机碳(DOC)的季节动态。结果表明:不同土层碱解氮、溶解性有机碳的季节动态并不相同。0~10 cm土层碱解氮与DOC季节动态相似,6月土壤碱解氮与DOC含量均最高,分别为244.86 mg/kg和13.16 mg/L。8月碱解氮含量最低,为139.18 mg/kg;9月DOC含量最低。10~20 cm土层DOC的季节性动态变化与表土具有相似性,峰值均出现在6月,谷值出现在9月;10~20 cm土层碱解氮最低值出现在6月,与0~10 cm土层不同。20~30 cm土层内,4~7月DOC几乎无变化,8月DOC含量最低,9月增加;4~5月碱解氮波动较大,5月降到102 mg/kg,6月增加到151 mg/kg。研究表明,盘锦湿地芦苇群落土壤微生物活性与凋落物分解对DOC及碱解氮的季节动态有很大的影响,同时温度、降水量及冻融也影响着DOC及碱解氮的季节动态。  相似文献   

6.
徐星凯 《大气科学进展》2009,26(6):1253-1261
Soil acidification via acid precipitation is recognized to have detrimental impacts on forest ecosystems, which is in part associated with the function of ethylene released from the soil. However, the impacts of acidification on the cycling of ethylene in forest soils have not been fully taken into consideration in global change studies. Forest topsoils (0--5 cm) under four temperate forest stands were sampled to study the effects of a pH change on the emissions of ethylene and carbon dioxide from the soils and concentrations of dissolved organic carbon (DOC) released into the soils. Increasing acidification or alkalinization of forest soils could increase concentrations of DOC released into the soils under anoxic and oxic conditions. The ethylene emission from these forest topsoils could significantly increase with a decreasing pH, when the soils were acidified experimentally to a pH<4.0, and it increased with an increasing concentration of DOC released into the soils, which was different from the carbon dioxide emission from the soils. Hence, the short-term stimulating responses of ethylene emission to a decreasing pH in such forest soils resulted from the increase in the DOC concentration due to acidification rather than carbon mineralization. The results would promote one to study the effects of soil acidification on the cycling of ethylene under different forest stands, particularly under degraded forest stands with heavy acid depositions.  相似文献   

7.
Northern peatlands play an important role globally in the cycling of C, through the exchange of CO2 with the atmosphere, the emission of CH4, the production and export of dissolved organic carbon (DOC) and the storage of C. Under 2 × CO2 GCM scenarios, most Canadian peatlands will be exposed to increases in mean annual temperature ranging between 2 and 6° C and increases in mean annual precipitation of 0 to 15 %, with the most pronounced changes occurring during the winter. The increase in CO2 uptake by plants, through warmer temperatures and elevated atmospheric CO2, is likely to be offset by increased soil respiration rates in response to warmer soils and lowered water tables. CH4 emissions are likely to decrease in most peatlands because of lowered water tables, except where the peat surface adjusts to fluctuating water tables, and in permafrost, where the collapse of dry plateau and palsa will lead to increase CH4 emission. There likely will be little change in DOC production, but DOC export to water bodies will decrease as runoff decreases. The storage of C in peatlands is sensitive to all C cycle components and is difficult to predict. The challenge is to develop quantitative models capable of making these predictions for different peatlands. We present some qualitative responses, with levels of uncertainty. There will be, however, as much variation in response to climatic change within a peatland as there will be among peatland regions.  相似文献   

8.
冻融循环是影响土壤碳氮生物地球化学过程较为重要的因素。在全球变化背景下,冻融作用对冻土区土壤碳库稳定性及其关键生物地球化学过程影响研究是当前国际热点,尤其是冻融作用影响下多年冻土区泥炭地土壤有机碳矿化研究目前仍未明确。选取我国大兴安岭多年冻土区泥炭地表层(0~15 cm)和深层(15~30 cm)土壤,采用冻融试验及室内培养方法,探索分析了冻融作用影响下泥炭地土壤有机碳矿化特征,并从土壤活性碳和土壤酶活性角度阐述了影响机制。结果表明在短期的培养中,土壤有机碳矿化量在483~2836 mg/kg间波动,而冻融循环均显著降低了表层和深层土壤有机碳矿化量,并且对深层土壤有机碳的矿化抑制作用更为明显,高达76%。值得注意的是,冻融循环却明显促进了CH4的排放,尤其是表层土壤,高达145%。冻融循环作用也显著增加了土壤可溶性有机碳(DOC)含量,但却降低了土壤微生物量碳(MBC)以及土壤纤维素酶、淀粉酶和蔗糖酶活性。冻融作用下低的土壤酶活性以及相对低质量碳是抑制土壤有机碳矿化的原因。全球变暖背景下,与单纯温度增加所导致的土壤有机碳矿化释放量相比,冻融循环作用能降低大兴安岭泥炭地活动层中土壤有机碳在短期内碳的释放。  相似文献   

9.
 Wetland regions are important components of the local climate, with their own characteristic surface energy and moisture budgets. Realistic representation of wetlands, including the important vegetation component, may therefore be necessary for more accurate simulations of climate and climate change. However, many land-atmosphere coupled models either ignore wetlands or treat wetlands as bare, water-saturated soil, neglecting the vegetation present within wetland environments. This study investigates the possible response of the mid-Holocene climate of North Africa to changes in orbital forcing, both with and without the presence of wetlands. The location of these wetlands is guided by analysis of paleovegetation and wetland distribution. In this study, the wetland regime in the land surface component of a climate model was modified to incorporate vegetation. Field measurements have shown that vegetation affects water loss associated with evaporation (including transpiration) within a wetland area. Comparisons between non-vegetated wetland and vegetated wetland revealed an increase in local albedo that produced an associated decrease in net radiation, evaporation and precipitation in the vicinity of the wetlands regions. Based on an analysis of the model surface water balance, the calculated area of mid-Holocene wetland coverage for North Africa closely matches the observed. For the North African region as a whole, the effects of adding vegetation to the wetland produced relatively small changes in climate, but local recycling of water may have served to help maintain paleo wetland communities. Received: 16 March 1999 / Accepted: 17 May 2000  相似文献   

10.
Prediction of the effects of external influences such as climate change on wetland systems requires the prediction of hydrologic effects. Because wetland soils are typically heterogeneous, it is particularly important to understand the extent and connectedness of hydraulically conductive soil units, since water flow may be concentrated in such units while bypassing others of lower conductivity. However, subsurface hydrologic models typically do not represent heterogeneity adequately, being limited by sparse parameterization of soil properties. Conventional techniques for mapping units of soil within wetlands are highly laborious, requiring soil coring and laboratory testing. As an alternative, we developed a portable piezocone driver and highly sensitive piezocone designed to map wetland soil units with centimeter-scale resolution in the vertical and meter-scale resolution in the horizontal dimension. This system successfully delineated several different layers of peat, sand, and limnetic sediments, and their degree of interconnectedness in an eight-meter-thick peat deposit. Monitoring of wetland response to precipitation, changes in stream stage, and overbank flooding was then used in conjunction with the piezocone data and a two-dimensional flow model to constrain the hydraulic properties of the soil units. Thus parameterized, a standard subsurface flow model was able to realistically simulate a variety of hydrologic processes relevant to climate change, including wetland-stream water exchange, the movement of wetland porewaters to the root zone of plants, and wetland desaturation under dry conditions.  相似文献   

11.
采用新一代中尺度数值模式WRFv3.2版本,模拟研究了前期(秋季)土壤湿度异常对云南冬季降水的影响。数值模拟试验结果和一系列分析清楚表明,前期(秋季)土壤湿度的异常偏低,会导致云南地区冬季(12月1日~2月28日)降水的显著减少;前期土壤湿度减少一半,可以使云南冬季的降水量平均减少30%以上,小部分区域减少达50%以上,影响十分明显。大气环流及其主要参量模拟结果的对比分析清楚表明,持续的西偏北气流和干气团的控制以及云南地区大气散度场和垂直运动场等的异常是导致降水量减少的直接原因。对降水过程的分析表明,前期土壤湿度减少对降水过程的频次和发生时间的影响较小,但对各次过程的降水强度影响明显。这是前期土壤湿度减少所导致的包括区域性蒸发量和热通量等大气物理过程的改变决定的。本研究数值模拟结果与关于区域性土壤湿度异常影响机理的已有结论基本一致。  相似文献   

12.
13.
中国湿地土壤碳库保护与气候变化问题   总被引:10,自引:0,他引:10  
 中国湿地分布广, 类型丰富, 但存在着垦殖率高、碳密度较低、围垦损失严重等问题。估计我国湿地土壤碳库达8~10 Pg, 占全国陆地土壤总有机碳库的约1/10~1/8, 过去50 a间的损失可能达1.5 Pg。围垦和过度放牧是我国湿地土壤退化和碳库损失的主要驱动因子。目前,湿地土壤碳库保护面临严峻的挑战,从应对气候变化和保护人类生存环境的战略高度切实加强湿地资源保护,可以为增强陆地生态系统碳汇、探寻温室气体减排的潜在途径提供技术支持。  相似文献   

14.
中国湿地土壤碳库保护与气候变化问题   总被引:3,自引:0,他引:3  
中国湿地分布广, 类型丰富, 但存在着垦殖率高、碳密度较低、围垦损失严重等问题。估计我国湿地土壤碳库达8~10 Pg, 占全国陆地土壤总有机碳库的约1/10~1/8, 过去50 a间的损失可能达1.5 Pg。围垦和过度放牧是我国湿地土壤退化和碳库损失的主要驱动因子。目前,湿地土壤碳库保护面临严峻的挑战,从应对气候变化和保护人类生存环境的战略高度切实加强湿地资源保护,可以为增强陆地生态系统碳汇、探寻温室气体减排的潜在途径提供技术支持。  相似文献   

15.
气候变化与松嫩流域黑土退化   总被引:5,自引:0,他引:5  
松嫩流域是世界三大黑土带中国境内主要部分,黑土的开发利用和保护越来越受到关注.本文通过利用气候要素计算土壤有机碳含量的方法分析了松嫩流域黑土地有机碳含量的分布状况和近 50a来气候变化可能引起碳含量的减少.认为松嫩流域土壤有机碳含量的分布有很好的规律,呈自西南向东、向北减少的梯度变化.这种分布与松嫩流域长期以来形成的气候状况有关,即湿润地区优越于亚干旱地区;由于近 50a来的气候变化导致了土壤中有机碳的含量下降,西南部亚干旱地区减少的最多.因此可以得出近 50a的气候变化也是松嫩流域黑土退化的原因之一.  相似文献   

16.
Incorporating organic soil into a global climate model   总被引:3,自引:1,他引:2  
Organic matter significantly alters a soil’s thermal and hydraulic properties but is not typically included in land-surface schemes used in global climate models. This omission has consequences for ground thermal and moisture regimes, particularly in the high-latitudes where soil carbon content is generally high. Global soil carbon data is used to build a geographically distributed, profiled soil carbon density dataset for the Community Land Model (CLM). CLM parameterizations for soil thermal and hydraulic properties are modified to accommodate both mineral and organic soil matter. Offline simulations including organic soil are characterized by cooler annual mean soil temperatures (up to ∼2.5°C cooler for regions of high soil carbon content). Cooling is strong in summer due to modulation of early and mid-summer soil heat flux. Winter temperatures are slightly warmer as organic soils do not cool as efficiently during fall and winter. High porosity and hydraulic conductivity of organic soil leads to a wetter soil column but with comparatively low surface layer saturation levels and correspondingly low soil evaporation. When CLM is coupled to the Community Atmosphere Model, the reduced latent heat flux drives deeper boundary layers, associated reductions in low cloud fraction, and warmer summer air temperatures in the Arctic. Lastly, the insulative properties of organic soil reduce interannual soil temperature variability, but only marginally. This result suggests that, although the mean soil temperature cooling will delay the simulated date at which frozen soil begins to thaw, organic matter may provide only limited insulation from surface warming.  相似文献   

17.
Offsetting China's CO2 Emissions by Soil Carbon Sequestration   总被引:4,自引:0,他引:4  
R. Lal 《Climatic change》2004,65(3):263-275
Fossil fuel emissions of carbon (C) in China in 2000 was about 1 Pg/yr, which may surpass that of the U.S. (1.84 Pg C) by 2020. Terrestrial C pool of China comprises about 35 to 60 Pg in the forest and 120 to 186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Similar to world soils, agricultural soils of China have also lost 30 to 50% or more of the antecedent soil organic carbon (SOC) pool.Some of the depleted SOC pool can be re-sequestered through restoration of degraded soils, and adoption of recommended management practices. The latter include conversion of upland crops to multiple cropping and rice paddies, adoption of integrated nutrient management (INM) strategies, incorporation of cover crops in the rotations cycle and adoption of conservation-effective systems including conservation tillage. A crude estimated potential of soil C sequestration in China is 119 to 226 Tg C/y of SOC and 7 to 138 Tg C/y for soil inorganic carbon (SIC) up to 50 years. The total potential of soil C sequestration is about 12 Pg, and this potential can offset about 25%of the annual fossil fuel emissions in China.  相似文献   

18.
We analyse slope stability conditions for shallow landslides under an extreme precipitation regime with regard to present and future scenarios, in order to first study the effect of changes in precipitation on stability conditions, considering uncertainty in the model parameters, and second to evaluate which factors contribute the most to model output and uncertainty. We used a coupled hydrological-stability model to study the hydrological control on shallow landslides in different precipitation regimes, with reference to the case study of Otta, located in central east Norway. We included a wide range of climatic settings, taking intensity, duration of the extreme events and two different antecedent precipitation conditions into account. Eleven future scenarios were determined using results of down-scaled meteorological models. Considering the uncertainty in the soil parameters, we used the Monte Carlo approach and probability of failure resulting from 5,000 trials was calculated for each precipitation scenario. In unstable areas the probabilities of failure at present and future conditions were compared using a bootstrapping method. Sensitivity analysis was carried out to understand how variations in input parameters influence the output of the selected model. The results show changes in the modelled stability conditions only if the effect of antecedent precipitation is not taken into account. The uncertainties in the predicted extreme precipitation events, soil parameters, and antecedent precipitation conditions do not allow any accurate estimation of changes in stability conditions for shallow landslides.  相似文献   

19.
汤志成  张旭晖 《气象科学》1996,16(3):249-255
本文利用江苏省1980-1992年土壤湿度资料,根据土壤水分平衡原理,运用运筹学中的优化技术,结合本省的自然条件和作物生长实际情况,计算出有效降水量,下层水补给量,建立了旱地农田水盈亏的计算模式。  相似文献   

20.
Abstract

A hydraulic parametrization is developed for peatland environments in the Canadian Land Surface Scheme (CLASS). Three ‐wetland soil classes account for the typical variation in the hydraulic characteristics of the uppermost 0.5 m of organic soils. Review of the literature reveals that saturated hydraulic conductivity varies from a median of 1.0 × 10?7m/s in deeply humified sapric peat to 2.8 × 10?4 m/s in relatively undecomposed fibric peat. Average pore volume fraction ranges from 0.83 to 0.93. Parameters have been designed for the soil moisture characteristic curves for fibric, hemic and sapric peat using the Campbell (1974) equation employed in CLASS, and the van Genuchten (1980) formulation. There is little difference in modelled soil moisture between the two formulations within the range of conditions normally found in peatlands. Validation of modelled water table depth and peat temperature is performed for a fen in northern Québec and a bog in north‐central Minnesota. The new parametrization results in a more realistic simulation of these variables in peatlands than the previous version of CLASS, in which unrealistic mineral soil “equivalents “ were used for wetland soil climate modelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号