首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High concentrations of U and226Ra, and elevated234U/238U activity ratios have been measured in groundwater samples collected from water supply wells and exploratory boreholes in the area surrounding the Underground Research Laboratory (URL) of Atomic Energy of Canada Limited, in southeastern Manitoba. All groundwaters come from the Lac du Bonnet granite batholith or sediments overlying the batholith.Uranium concentrations attain almost 1 mg/l in some shallow, low-salinity groundwaters, whereas226Ra tends to be high (up to 38 Bq/l) in deeper, saline waters. The U concentrations are some of the highest observed in global groundwaters, yet no significant ore body or mineralization is known in the area. Analyses of unaltered rock samples of the Lac du Bonnet granite show slight U enrichment over average Canadian Shield granites (6.5 μg/g vs 4 μg/g), and altered wall rock in fracture zones is enriched in U by up to an order of magnitude compared to adjacent bedrock. Low234U/238U activity ratios in this altered rock indicate active and recent leaching of U by groundwater.The key control on U concentration appears to be redox potential. Concentrations of U in rock, residence time and groundwater composition are of lesser importance. Geochemical modelling of the shallower, oxidized waters indicates that U speciation consists mainly of anionic carbonate complexes of the uranyl ion. This is supported by the remarkable efficiency of an anionic filter developed to remove high levels of U from drinking water in the area.In more reducing groundwaters, U concentrations are similar to those determined in recent experimental work on uraninite solubility in the pH range 7–8.5. Colloidal U is <10% of total U and organic complexation is unlikely to be significant because of low dissolved organic concentrations. The results emphasize the significance of redox potential in controlling U mobility in both oxidizing and reducing environments and indicate the usefulness of U concentration in estimating groundwater Eh.  相似文献   

2.
Uranium accumulation in organic-rich sediments can be closely modelled by assuming that the dominant effect of the uranium-organic matter interaction is the direct or indirect reduction of uranyl compounds to form U(IV) minerals, especially uraninite-pitchblende. Application of this model to the Needle's Eye (Scotland) site where uranium is actively accumulating in Quaternary sediments demonstrates that uranium accumulation is both effective and rapid in environments involving shallow, organic-rich, reducing horizons. The period of uranium deposit formation at Needle's Eye is estimated to be as short as 5000 years. The transport of uranium to the site of deposition by oxidizing groundwaters and the channelling of these oxidizing uraniferous groundwaters are identified as important factors involved in the rapid accumulation of uranium. The regional hydrogeological model indicates that a fault in the area appears to act as a hydraulic screen for the uraniferous groundwaters. On one side of the fault the Quaternary sediments are well drained whilst on the other the flow of groundwater seeps out creating a major flux just at the bottom of the organic-rich layers. The local hydrogeological model shows that the groundwater flow is vertical in this area. A third significant factor in the development of these uranium accumulations is the presence of a significant nearby source of leachable primary uranium. In the case of the Needle's Eye site this is in the form of some thirty 185 ±20 Ma, pitchblende-bearing veins.  相似文献   

3.
Oxidizing conditions normally prevail in surface waters and near-surface groundwaters, but there is usually a change to reducing conditions in groundwater at greater depth. Dissolved O2 originally present is consumed through biogenic and inorganic reactions along the flow paths. Fracture minerals participate in these reactions and the fracture mineralogy and geochemistry can be used to trace the redox front. An important task in the safety assessment of a potential repository for the disposal of nuclear waste in crystalline bedrock, at an approximate depth of 500 m in Sweden, is to demonstrate that reducing conditions can be maintained for a long period of time. Oxygen may damage the Cu canisters that host nuclear waste; additionally, in the event of a canister failure, oxidizing conditions may increase the mobility of some radionuclides. The present study of the near-surface redox front is based on mineralogical (redox-sensitive minerals), geochemical (redox-sensitive elements) and U-series disequilibrium investigations of mineral coatings along open fractures. The fractures have been sampled along drill cores from closely spaced, 100 m deep boreholes, which were drilled during the site investigation work in the Laxemar area, south-eastern Sweden, carried out by the Swedish Nuclear Fuel and Waste Management Co. (SKB). The distribution of the redox-sensitive minerals pyrite and goethite in open fractures shows that the redox front (switch from mainly goethite to mainly pyrite in the fractures) generally occurs at about 15–20 m depth. Calcite leaching by recharging water is indicated in the upper 20–30 m and positive Ce-anomalies suggest oxidation of Ce down to 20 m depth. The U-series radionuclides show disequilibrium in most of the samples, indicating mobility of U during the last 1 Ma. In the upper 20 m, U is mainly removed (due to oxidation) or has experienced complex removal and/or deposition. At depths of 35–55 m, both deposition and removal of U are indicated. Below 55 m, recent deposition of U is generally indicated which suggests removal of U near surface (oxidation) and deposition of U below the redox front. Scattered goethite occurrences below the general redox front (down to ca 80 m) and signs of U removal at 35–55 m mostly correlate with sections of high transmissivity (and/or high fracture frequencies). This shows that highly transmissive fractures are generally required to allow oxygenated groundwaters at depth greater than ca 30 m. Removal of U (oxidation) below 55 m within the last 300 ka is not observed. Although penetration of glacial waters to great depths has been confirmed in the study area, their potential O2 load seems to have been reduced near the surface.  相似文献   

4.
The solution of radioelements and radiogenic 4He by groundwaters in fractured rocks is dependent upon the radioelement distribution in the rock matrix and the extent of the rock-water interface. The 234U238U activity ratio and the dissolved U, Rn and He contents of such groundwaters respond to changes in the flow regime with time. Although 234U238U activity ratios change with groundwater residence time as a consequence of 234Th-recoil induced solution of 234U, the activity ratio is strongly influenced by the U distribution within fractures, by the extent of the rock-water interface and by the amount of 238U in solution. A model for the quantitative evaluation of these effects is presented.Groundwaters from depths up to 880 m in the Stripa granite have variable dissolved uranium contents and 234U238U activity ratios. The uranium geochemistry is primarily determined by variations in flow path rather than by groundwater age.Dissolved radiogenic 4He in the groundwaters increases with their depth of origin, and is dependent upon the U content of the granite and upon its fracture porosity. It increases with groundwater residence time but movement of 4He by diffusion and transport processes make the actual groundwater age indeterminate.  相似文献   

5.
This study simulates and quantifies the exchange and the pathways of deep and shallow groundwater flow and solute transport under different climate and permafrost conditions, considering the example field case of the coastal Forsmark catchment in Sweden. A number of simulation scenarios for different climate and permafrost condition combinations have been performed with the three-dimensional groundwater flow and transport model MIKE SHE. Results show generally decreasing vertical groundwater flow with depth, and smaller vertical flow under permafrost conditions than under unfrozen conditions. Also the overall pattern of both the vertical and the horizontal groundwater flow, and the water exchange between the deep and shallow groundwater systems, change dramatically in the presence of permafrost relative to unfrozen conditions. However, although the vertical groundwater flow decreases significantly in the presence of permafrost, there is still an exchange of water between the unfrozen groundwater system below the permafrost and the shallow groundwater in the active layer, via taliks. ‘Through taliks’ tend to prevail in areas that constitute groundwater discharge zones under unfrozen conditions, which then mostly shift to net recharge zones (through taliks with net downward flow) under permafrost conditions.  相似文献   

6.
To test the usefulness of groundwater for U prospecting, 130 domestic wells were sampled from a 22,000 km2 rectangular area extending south and west from Ottawa, Ontario. The waters were analyzed for twenty variables including ten gases and five trace elements.The dissolved gases give information on subsurface chemical and geological environments. Carbon dioxide highs occur at the contact of granites and limestones; He highs are along major faults; CH4 and H2S reveal strongly reducing environments, and O2 in wells indicates shallow wells or active water turnover. Rn reveals U mineralization and granitic rocks.The South March U-Cu surface occurrence gives coincident U, Cu, Zn, Pb and Rn highs. A weak U-Rn-Cu high in the Richmond-North Gower area suggests more radioactive subcropping March formation there.A strong regional He anomaly coincident with the outcropping Rockcliffe Formation and controlled by the Hazeldean Fault is believed to be due to deep-seated He, but its coincidence with a weak regional Cu anomaly, a Rn anomaly in the Bells Corners area, its linear northeast trend, the presence of Helikian U-rich source rocks to the southwest, and northeast-dipping Paleozoic sandstones provide both indications of, and the right environment for epigenetic type U-Cu occurrences.  相似文献   

7.
Hundreds of precipitation samples collected from meteorological stations in the Ordos Basin from January 1988 to December 2005 were used to set up a local meteoric water line and to calculate weighted average isotopic compositions of modern precipitation. Oxygen and hydrogen isotopes, with averages of ?7.8‰ and ?53.0‰ for δ18O and δD, respectively, are depleted in winter and rich in spring, and gradually decrease in summer and fall, illustrating that the seasonal effect is considerable. They also show that the isotopic difference between south portion and north portion of the Ordos Basin are not obvious, and the isotope in the middle portion is normally depleted. The isotope compositions of 32 samples collected from shallow groundwater (less than a depth of 150 m) in desert plateau range from ?10.6‰ to ?6.0‰ with an average of ?8.4‰ for δ18O and from ?85‰ to ?46‰ with an average of ?63‰ for δD. Most of them are identical with modern precipitation. The isotope compositions of 22 middle and deep groundwaters (greater than a depth of 275 m) fall in ranges from ?11.6‰ to ?8.8‰ with an average of ?10.2‰ for δ18O and from ?89‰ to ?63‰ with an average of ?76‰ for δD. The average values are significantly less than those of modern precipitation, illustrating that the middle and deep groundwaters were recharged at comparatively lower air temperatures. Primary analysis of 14C shows that the recharge of the middle and deep groundwaters started at late Pleistocene. The isotopes of 13 lake water samples collected from eight lakes define a local evaporation trend, with a relatively flat slope of 3.77, and show that the lake waters were mainly fed by modern precipitation and shallow groundwater.  相似文献   

8.
A mobile mass spectrometer to measure He concentrations has been developed by the U.S. Geological Survey. This instrument has been tested in areas of known uranium deposits, and He anomalies have been found in both soil gas and water. A gas sample is collected in a hypodermic syringe, injected into the spectrometer, and analyzed for He. Over 100 analyses a day can be performed with a sensitivity of 10 parts per billion (ppb). One detailed study conducted in Weld County, Colorado, shows that values for He in soil gas can be contoured to outline an anomalous area and that the anomaly is displaced from the deposit in the direction of groundwater flow. Other studies include the Schwartzwalder uranium mine, Jefferson County, Colorado, where He anomalies may be related to geologic structure; near Ambrosia Lake, New Mexico, where the location of He anomalies are related to groundwater movement; and tests for diurnal effects showing only slight variations probably related to soil-moisture content.  相似文献   

9.
《Applied Geochemistry》1991,6(6):597-612
A small (4 km2) drainage basin in northeastern Washington contains highly uraniferous groundwater and highly uraniferous peaty sediments of Holocene age. The U is derived from granitic bedrock that underlies the entire drainage basin and that contains 9–16 ppm U. This local bedrock was studied by petrographic, chemical and isotopic methods to determine conditions of its petrogenesis and post-emplacement history that may have contributed to its present high U content and source-rock capability. The original magma was derived by anatexis of Precambrian continental crust of probable mixed metaigneous and metasedimentary character. Mineral-melt partitioning controlled the enrichment of U in chemically evolved phases of the crystallizing melt. Following emplacement in the upper crust at ∼100Ma, the pluton interacted with meteoric-hydrothermal water at ambient temperatures 300°C. Locally intense fracturing promoted alteration, and fracturing and alteration probably continued during later regional uplift in the Eocene. Regional uplift was followed by low-temperature alteration and weathering in the middle to late Tertiary. The combined result of hydrothermal alteration and low-temperature alteration and weathering was the redistribution of U from primary mineral hosts such as allanite to new sites on fracture surfaces and in secondary minerals such as hematite. Zones of highly fractured and altered rock show the most obvious evidence of this process. A model is proposed in which high-angle fractures beneath the drainage basin were the sites of Tertiary supergene enrichments of U. Recent glacio-isostatic uplift has elevated these older enriched zones to shallow levels where they are now being leached by oxidizing groundwater. The chemistry, mineralogy, texture and geological history of this U source-rock suggest criteria for locating other granitic terrane that may contain uraniferous waters and associated young surficial U deposits. The details of U distribution and mobility at this site also apply to the general topic of U mobility in granitic rocks.  相似文献   

10.
Redox buffering is one important factor to be considered when assessing the barrier function of potential host rocks for a deep geological repository for long-lived radioactive waste. If such a repository is to be sited in fractured crystalline host rock it must be demonstrated that waste will be emplaced deeper than the maximum depth to which oxidizing waters can penetrate from the earth’s surface via fractures, during the assessment timeframe (typically 1 Ma). An analogue for penetration of such oxidizing water occurs in the Cretaceous Toki Granite of central Japan. Here, a deep redox front is developed along water-conducting fractures at a depth of 210 m below the ground surface. Detailed petrographical studies and geochemical analyses were carried out on drill core specimens of this redox front. The aim was to determine the buffering processes and behavior of major and minor elements, including rare earth elements (REEs), during redox front development. The results are compared with analytical data from an oxidized zone found along shallow fractures (up to 20 m from the surface) in the same granitic rock, in order to understand differences in elemental migration according to the depth below the ground surface of redox-front formation. Geochemical analyses by XRF and ICP-MS of the oxidized zone at 210 m depth reveal clear changes in Fe(III)/Fe(II) ratios and Ca depletion across the front, while Fe concentrations vary little. In contrast, the redox front identified along shallow fractures shows strong enrichments of Fe, Mn and trace elements in the oxidized zone compared with the fresh rock matrix. The difference can be ascribed to the changing Eh and pH of groundwater as it flows downwards in the granite, due to reactions with rock forming minerals, in particular feldspar dissolution. These observations give important insights into the processes that control the rates of redox front penetration in fractured crystalline rock. The findings of the study can be used to help build confidence among stakeholders that radioactive waste would be emplaced in such rocks at greater depth than that to which oxidizing water is likely to penetrate in future.  相似文献   

11.
A 7-year monitoring period of rare earth element (REE) concentrations and REE pattern shapes was carried out in well water samples from a 450 m long transect setup in the Kervidy/Coët-Dan experimental catchment, France. The new dataset confirms systematic, topography-related REE signatures and REE concentrations variability but challenges the validity of a groundwater mixing hypothesis. Most likely, this is due to REE preferential adsorption upon mixing. However, the coupled mixing–adsorption mechanism still fails to explain the strong spatial variation in negative Ce anomaly amplitude. A third mechanism—namely, the input into the aquifer of REE-rich, Ce anomaly free, organic colloids—is required to account for this variation. Ultrafiltration results and speciation calculations made using Model VI agree with this interpretation. Indeed, the data reveal that Ce anomaly amplitude downslope decrease corresponds to REE speciation change, downhill groundwaters REE being mainly bound to organic colloids. Water table depth monitoring shows that the colloid source is located in the uppermost, organic-rich soil horizons, and that the colloid input occurs mainly when water table rises in response to rainfall events. It appears that the colloids amount that reaches groundwater increases downhill as the distance between soil organic-rich horizons and water table decreases. Topography is, therefore, the ultimate key factor that controls Ce anomaly spatial variability in these shallow groundwaters. Finally, the <0.2 μm REE fraction ultimately comes from two solid sources in these groundwaters: one located in the deep basement schist; another located in the upper, organic-rich soil horizon.  相似文献   

12.
Geochemical and mineralogical studies were conducted on the 12-m-thick weathering profile of the Kata Beach granite in Phuket, Thailand, in order to reveal the transport and adsorption of rare earth elements (REE) related to the ion-adsorption type mineralization. The parent rock is ilmenite-series biotite granite with transitional characteristics from I type to S type, abundant in REE (592 ppm). REE are contained dominantly in fluorocarbonate as well as in allanite, titanite, apatite, and zircon. The chondrite-normalized REE pattern of the parent granite indicates enrichment of LREE relative to HREE and no significant Ce anomaly. The upper part of the weathering profile from the surface to 4.5 m depth is mostly characterized by positive Ce anomaly, showing lower REE contents ranging from 174 to 548 ppm and lower percentages of adsorbed REE from 34% to 68% compared with the parent granite. In contrast, the lower part of the profile from 4.5 to 12 m depth is characterized by negative Ce anomaly, showing higher REE contents ranging from 578 to 1,084 ppm and higher percentages from 53% to 85%. The negative Ce anomaly and enrichment of REE in the lower part of the profile suggest that acidic soil water in an oxidizing condition in the upper part mostly immobilized Ce4+ as CeO2 and transported REE3+ downward to the lower part of the profile. The transported REE3+ were adsorbed onto weathering products or distributed to secondary minerals such as rhabdophane. The immobilization of REE results from the increase of pH due to the contact with higher pH groundwater. Since the majority of REE in the weathered granite are present in the ion-adsorption fraction with negative Ce anomaly, the percentages of adsorbed REE are positively correlated with the whole-rock negative Ce anomaly. The result of this study suggests that the ion-adsorption type REE mineralization is identified by the occurrence of easily soluble REE fluorocarbonate and whole-rock negative Ce anomaly of weathered granite. Although fractionation of REE in weathered granite is controlled by the occurrence of REE-bearing minerals and adsorption by weathering products, the ion-adsorption fraction tends to be enriched in LREE relative to weathered granite.  相似文献   

13.
《Applied Geochemistry》2004,19(3):261-271
The distribution of Rare Earth Elements (REE) was investigated in the acidic waters (lake and groundwater) of a lignite mining district (Germany). The Fe- and SO4-rich lake water (pH 2.7) displays high REE contents (e.g. La∼70 μg/l, Ce∼160 μg/l) and an enrichment of light REE (LREE) in the NASC normalised pattern. Considering the hydrodynamic model and geochemical data, the lake water composition may be calculated as a mixture of inflowing Quaternary and mining dump groundwaters. The groundwater of the dump aquifer is LREE enriched. Nevertheless, the leachates of dump sediments generally have low REE contents and display flat NASC normalised patterns. However, geochemical differences and REE pattern in undisturbed lignite (LREE enriched pattern and low water soluble REE contents) and the weathered lignite of the dumps (flat REE pattern and high water soluble REE contents) suggest that lignite is probably the main REE source rock for the lake water.  相似文献   

14.
赵一阳  鄢明才 《地球化学》1994,23(2):132-139
基于60余种化学元素丰度的比较,发现冲绳海槽海底存在汞异常,论证了“过剩汞”系源自海底热水,指出汞异常可作为现代海底热水效应的一个地球化学指示剂。  相似文献   

15.
GeochemistryofThermal-MineralWatersinSiping'anDistrict,ShanxiProvince,China¥WanYanxin;SunLianfa(DepartmentofHydrogeologyandEn...  相似文献   

16.
黄河源区地下水位下降对生态环境的影响   总被引:17,自引:6,他引:11  
黄河源区1:250000区域环境地质调查资料与以往资料的对比表明,黄河源区区域地下水位近几十年来呈现明显的下降趋势,主要表现在:地下水露头泉口下移,河谷区民井地下水位下降及山前冲洪积扇前缘泄出带下移.多年冻土的退化直接导致了冷生隔水层的下移,从而引起区域地下水位的下降.区域地下水位的下降导致生态水位下降,包气带土壤层的含水量减少,使该区出现植被草场退化、生物多样性减少、沼泽湿地萎缩、鼠害猖獗、荒漠化加剧及黄河断流等生态环境问题.  相似文献   

17.
The discovery of layered, SO4-rich sediments on the Meridiani Planum on Mars has focused attention on understanding the formation of acid–saline lakes. Many salt lakes have formed in southern Australia where regional groundwaters are characterized by acidity and high salinity and show features that might be expected in the Meridiani sediments. Many (but not all) of the acid–saline Australian groundwaters are found where underlying Tertiary sediments are sulfide-rich. When waters from the formations come to the surface or interact with oxidised meteoric water, acid groundwaters result. In this paper examples of such waters around Lake Tyrrell, Victoria, and Lake Dey-Dey, South Australia, are reviewed. The acid–saline groundwaters typically have dissolved solids of 30–60 g/L and pH commonly <4.5. Many contain high concentrations of Fe and other metals, leached from local sediments. The combination of acidity and salinity also releases Ra. Around salt-lakes, these acidic waters often emerge at the surface in marginal spring zones where the low density (ρ ∼ 1.04) regional water flows out over the denser (ρ ∼ 1.16) lake brines. In the spring zones examined, large amounts of Fe are commonly precipitated. In a few places minerals of the alunite-jarosite family are formed which can trap many other metals, including Ra. The studied groundwater systems were discovered by U exploration programs following up radiometric anomalies related to this Ra. Evaporation concentrates the lesser soluble salts (gypsum and some halite) on the surface of the lakes. The lake brines contain most of the more soluble salts and form a column within the porous sediments which is held in place by hydrostatic forces around the salt-lake. These brines are near-neutral in pH.  相似文献   

18.
In this study, the total concentration and speciation of trace elements (As, Cr, Cu, Cd, Pb, Zn, and Ni), in sediments of the Maharlu saline Lake, SW Iran are investigated. Comparison with sediment quality guidelines, calculation of the enrichment factors, and trace metal profiles in the Khoshk River inflow point indicate that Maharlu Lake is in the threat of contamination, especially with respect to Ni and Cd. Sequential extraction analysis reveals that elemental speciation in this lake is strongly affected by oxidizing condition of the lake water. The studied elements (except Cr) are mainly associated with oxide phases, as a result of prevailing oxidizing conditions of the lake and also probably due to the source of elements. The ratio of metals in mobile fractions to sum of fractions in lake sediments is very low. However, metal ratios (except for Cr) in mobile fractions are much higher in surface sediments, indicating the impact of anthropogenic loading of trace metals in the recent years.  相似文献   

19.
Ras Abda plutonic suite, North Eastern Desert of Egypt, consists predominantly of Neoproterozoic calc-alkaline older granites. Minor exposures of pink microgranite are occurring along Wadi Ras Abda within the older granites. Previous studies on this area demonstrated that the microgranite is altered in some parts and contains anomalous concentrations of rare metal elements (Zr, Th, and U). These altered and mineralized zones are re-assessed using field observations, chemical analysis, and by the application of various transmitted light and electron microscopic techniques. The rare metals exist as mineral segregation grew freely into open cavities of the microgranite and concordant with the NNE strike-slip fault movement. The mineralized zones contain an assemblage of secondary magnetite, zircon, uranothorite, columbite-(Mn), fergusonite-(Y), and allanite-(Ce). The extreme abundance of zircon in the mineralized zone, along with other evidence, indicates a hydrothermal origin of this zircon together with associated rare metals. The geochemical investigation and mass balance calculations revealed extreme enrichment of Zr, Th, U, Y, Nb, Ta, and REE. Post-magmatic hydrothermal alterations resulted in such pronounced chemical and mineralogical heterogeneity. The hydrothermal fluids are thought to be oxidizing, alkaline and of medium temperature (>?250 °C). The average contents of the elements Zr (1606 ppm), Th (1639 ppm), U (306 ppm), Nb (955 ppm), and REE (1710 ppm) in the mineralized microgranite reach sub-economic levels and could be a potential source of these elements.  相似文献   

20.
《Chemical Geology》2006,225(1-2):156-171
Groundwater samples were collected along a groundwater flow path in the Carrizo Sand aquifer in south Texas, USA. Field measurements that included pH, specific conductivity, temperature, dissolved oxygen (DO), oxidation–reduction potentials (Eh in mV), alkalinity, iron speciation, and H2S concentrations were also conducted on site. The geochemistry (i.e., concentrations, shale-normalized patterns, and speciation) of dissolved rare element elements (REEs) in the Carrizo groundwaters are described as a function of distance along a flow path. Eh and other redox indicators (i.e., DO, Fe speciation, H2S, U, and Re) indicate that redox conditions change along the flow path in the Carrizo Sand aquifer. Within the region of the aquifer proximal to the recharge zone, groundwaters exhibit both highly oxidizing and localized mildly reducing conditions. However, from roughly 10 km to the discharge zone, groundwaters are reducing and exhibit a progressive decrease in redox conditions. Dissolved REE geochemical behavior exhibits regular variations along the groundwater flow path in the Carrizo Sand aquifer. The changes in REE concentrations, shale-normalized patterns, and speciation indicate that REEs are not conservative tracers. With flow down-gradient, redox conditions, pH and solution composite, and adsorption modify groundwater REE concentrations, fractionation patterns, and speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号