首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
利用搭载在美国Aqua卫星上的大气红外探测仪(AIRS)观测资料反演的全球甲烷(CH_4)产品和NCEP再分析资料,分析了2003~2014年青藏高原上空CH_4的时空变化特征,探讨了夏季CH_4高值变化与季风的关系。研究结果表明:就青藏高原整体而言,CH_4浓度随高度增加递减;对流层中高层CH_4含量季节变化较为明显,其平均浓度在7~9月处于高值,6月、10月次之,其余月份处于低值。2003~2014年CH_4含量呈逐年上升趋势,年增长率约为4.66ppb(10-9)。高原上空CH_4空间分布分析显示,高原北部CH_4浓度高于南部地区。夏季风期间,随着高原上的强对流输送和上空南亚高压的阻塞,对流层中高层CH_4浓度明显增加并不断积累,在8月底至9月初出现最大值。在分析季风指数的基础上发现,夏季季风影响下的强对流输送是高原对流层中高层CH_4高值形成的主要原因之一,对流层中高层CH_4浓度最大值出现时间较季风指数的峰值滞后约半至一个月,随着夏季风的撤退,CH_4浓度高值迅速降低。  相似文献   

2.
Methane,carbon monoxide and methylchloroform in the southern hemisphere   总被引:1,自引:0,他引:1  
New observational data on CH4, CO and CH3CCl3 in the southern hemisphere are reported. The data are analysed for long term trends and seasonal cycles. CH3CCl3 data are used to scale the OH fields incorporated in a two dimensional model, which in turn, is used to constrain the magnitude of a global CH4 source function. The possible causes of observed seasonality of CH3CCl3, CH4 and CO are identified, and several other aspects of observed CH4 variability are discussed.Possible future research directions are also given.  相似文献   

3.
We used the global atmospheric chemical transport model,GEOS-Chem,to simulate the spatial distribution and seasonal variation of surface-layer methane (CH4) in 2004,and quantify the impacts of individual domestic sources and foreign transport on CH4 concentrations over China.Simulated surface-layer CH4 concentrations over China exhibit maximum concentrations in summer and minimum concentrations in spring.The annual mean CH4 concentrations range from 1800 ppb over western China to 2300 ppb over the more populated eastern China.Foreign emissions were found to have large impacts on CH4 concentrations over China,contributing to about 85% of the CH4 concentrations over western China and about 80% of those over eastern China.The tagged simulation results showed that coal mining,livestock,and waste are the dominant domestic contributors to CH4 concentrations over China,accounting for 36%,18%,and 16%,respectively,of the annual and national mean increase in CH4 concentration from all domestic emissions.Emissions from rice cultivation were found to make the largest contributions to CH4 concentrations over China in the summer,which is the key factor that leads to the maximum seasonal mean CH4 concentrations in summer.  相似文献   

4.
Wetland ecosystems are the most important natural methane (CH4) sources, whose fluxes periodically fluctuate. Methanogens (methane producers) and methanotrophs (methane consumers) are considered key factors affecting CH4 fluxes in wetlands. However, the symbiotic relationship between methanogens and methanotrophs remains unclear. To help close this research gap, we collected and analyzed samples from four soil depths in the Dajiuhu subalpine peatland in January, April, July, and October 2019 and acquired seasonal methane flux data from an eddy covariance (EC) system, and investigated relationships. A phylogenetic molecular ecological networks (pMENs) analysis was used to identify keystone species and the seasonal variations of the co-occurrence patterns of methanogenic and methanotrophic communities. The results indicate that the seasonal variations of the interactions between methanogenic and methanotrophic communities contributed to CH4 emissions in wetlands. The keystone species discerned by the network analysis also showed their importance in mediating CH4 fluxes. Methane (CH4) emissions in wetlands were lowest in spring; during this period, the most complex interactions between microbes were observed, with intense competition among methanogens while methanotrophs demonstrated better cooperation. Reverse patterns manifested themselves in summer when the highest CH4 flux was observed. Methanoregula formicica was negatively correlated with CH4 fluxes and occupied the largest ecological niches in the spring network. In contrast, both Methanocella arvoryzae and Methylocystaceae demonstrated positive correlations with CH4 fluxes and were better adapted to the microbial community in the summer. In addition, soil temperature and nitrogen were regarded as significant environmental factors to CH4 fluxes. This study was successful in explaining the seasonal patterns and microbial driving mechanisms of CH4 emissions in wetlands.  相似文献   

5.
A global two-dimensional chemistry model is developed to study long-term trends of CH4 since industrial revolution.The sources of CH4,CO and NOx are parameterized as functions of latitude and time.With two long-term emission scenarios,long-term trends of CH4 are simulated.The results have a good agreement with observation from ice cores.The modeled CH4 increased from 760 ppbv in 1840 to 1611.9 ppbv in 1991, while the modeled number concentration of tropospheric OH decreased from 7.17×105 cm-3 in 1840 to 5.79×105 cm-3 in 1991.The increase of atmospheric CH4 can be explained by the increase of emission of CH4 and build-up because of decrease of OH radicals that remove CH4 from the atmosphere.The model is also used to simulate the distribution of CH4.Comparisons between the model results and observations show that the model can simulate both latitudinal distribution and seasonal variation of CH4 well.  相似文献   

6.
Emissions may affect climate indirectly through chemical interactions in the atmosphere, but quantifications of such effects are difficult and uncertain due to incomplete knowledge and inadequate methods. A preliminary assessment of the climatic impact of changes in tropospheric O3 and CH4 in response to various emissions is given. For a 10% increase in the CH4 emissions the relative increase in concentration has been estimated to be 37% larger. The radiative forcing from enhanced levels of tropospheric O3 is estimated to 37% of the forcing from changes in CH4. Inclusion of indirect effects approximately doubles the climatic impact of CH4 emissions. Emissions of NOx increase tropospheric O3, while the levels of CH4 are reduced. For emissions of NOx from aircraft, the positive effects via O3 changes are significantly larger than the negative through changes in CH4. For NOx emitted from surface sources, the effects through changes in O3 and CH4 are estimated to be of similar magnitude and large uncertainty is connected to the sign of the net effect. Emissions of CO have positive indirect effects on climate through enhanced levels of tropospheric o3 and increased lifetime of CH4. These results form the basis for estimates of global warming potentials for sustained step increases in emissions.  相似文献   

7.
Methane(CH4) is an important greenhouse gas second only to CO2 in terms of its greenhouse effect. Vegetation plays an important role in controlling soil CH4 fluxes, but the spatial variability of soil CH4 fluxes during vegetation restoration in Loess Hilly Region(LHR) is not fully understood. The effects of different plant community types [Medicago sativa grassland(MS); Xanthoceras sorbifolium forestland(XS); Caragana korshinskii bushland(CK); Hippophae rhamnoide...  相似文献   

8.
利用瓦里关大气本底站甲烷观测数据对美国Aqua卫星的AIRS观测结果进行对比分析,并分析研究了2003~2012年青藏高原对流层大气甲烷的时空分布特征,结果表明:1)AIRS观测结果与近地面观测资料变化趋势一致,存在显著的正相关关系,突变时间比较一致,可以用于青藏高原区域的甲烷浓度特征分析。2)青藏高原对流层甲烷浓度在空间分布上存在显著的西北—东南走向的低值带及其南北侧存在4个固定的高值中心,分别位于阿里、那曲、山南和玉树。3)青藏高原甲烷浓度呈现显著随高度而降低的趋势,年平均甲烷浓度分别为1.810ppm(1 ppm=10-6)、1.797 ppm和1.781 ppm。在对流层中层和中上层,甲烷浓度基本呈现低值带最低、南北侧均高的山谷型分布特征。在对流层层顶,以低值带为分界线,呈现明显的南高北低特征。4)青藏高原甲烷浓度随时间呈缓慢上升趋势,平均速度为0.0018 ppm/a,夏季上升最快,秋季上升最慢。5)青藏高原甲烷存在明显的单峰型季节变化特征,夏秋季高,冬春季低,与东部地区冬、夏双峰型特征不同,随着高度上升季节变化更为明显。  相似文献   

9.
近期发布的IPCC第六次评估报告再次强调了短寿命期温室气体减排对温升减缓的作用。甲烷是最重要的短寿命期非CO2温室气体。在各国提出各自新的减排目标之后,针对甲烷减排的行动方案也越来越多。甲烷减排正在成为下一阶段各国和全球合作的重点领域之一。本文在我国碳减排目标下的能源转型基础上,结合其他非能源活动的减排排放源的减排技术选择基础上,利用IPAC模型对未来甲烷的排放情景进行了分析。在模型设定的两个情景分析基础之上,研究发现,到2050年的能源转型可明显减少能源活动的甲烷排放,和2015年相比能源活动的排放可减少67%。和其他行业相比,能源部门的甲烷减排具有更好的协同性。如果考虑进一步减排甲烷,则需要在考虑其他大气污染物减排的基础上,可通过实现天然气的进一步减排来实现。同时其他部门的甲烷减排也具有很大潜力,低甲烷排放情景可以实现到2050年将甲烷排放减少到1 494万吨,和2015年相比全范围排放可减排58%。  相似文献   

10.
An increase in atmospheric nitrogen (N) deposition can promote soil acidification, which may increase the release of ethylene (C2H4) under forest floors. Unfortunately, knowledge of whether increasing N deposition and C2H4 releases have synergistic effects on soil methane (CH4) uptake is limited and certainly deserves to be examined. We conducted some field measurements and laboratory experiments to examine this issue. The addition of (NH4)2SO4 or NH4Cl at a rate of 45 kg N ha-1 yr-1 reduced the soil CH4 uptake under a temperate old-growth forest in northeast China, and there were synergistic effects of N amendments in the presence of C2H4 concentrations equal to atmospheric CH4 concentration on the soil CH4 uptake, particularly in the NH4Cl-treated plots. Effective concentrations of added C2H4 on the soil CH4 uptake were smaller in NH+4 -treated plots than in KNO3-treated plots. The concentration of ca 0.3 μl C2H4 L-1 in the headspace gases reduced by 20% soil atmospheric CH4 uptake in the NH4Cl-treated plots, and this concentration was easily produced in temperate forest topsoils under short-term anoxic conditions. Together with short-term stimulating effects of N amendments and soil acidification on C2H4 production from forest soils, our observations suggest that knowledge of synergistic effects of NH+4 , rather than NO3- , amendments and C2H4 on the in situ soil CH4 uptake is critical for understanding the role of atmospheric N deposition and cycling of C2H4 under forest floors in reducing global atmospheric CH4 uptake by forests. Synergistic functions of NH4+ -N deposition and C2H4 release due to soil acidification in reducing atmospheric CH4 uptake by forests are discussed.  相似文献   

11.
This paper provides estimates of emissions of two important but often not well-characterized greenhouse gas (GHG) emissions related to transportation energy use: methane (CH4) and nitrous oxide (N2O). The paper focuses on emissions of CH4 and N2O from motor vehicles because unlike emissions of CO2, which are relatively easy to estimate, emissions of CH4 and N2O are a function of many complex aspects of combustion dynamics and of the type of emission control systems used. They therefore cannot be derived easily and instead must be determined through the use of published emission factors for each combination of fuel, end-use technology, combustion conditions, and emission control system. Furthermore, emissions of CH4 and N2O may be particularly important with regard to the relative CO2-equivalent GHG emissions of the use of alternative transportation fuels, in comparison with the use of conventional fuels. By analyzing a database of emission estimates, we develop emission factors for N2O and CH4 from conventional vehicles, in order to supplement recent EPA and IPCC estimates, and we estimate relative emissions of N2O and CH4 from different alternative fuel passenger cars, light-duty trucks, and heavy-duty vehicles.  相似文献   

12.
Summary The CH4 emission rates from Chinese rice fields have been measured in five typical areas representing all of the five major rice culture regions in People's Republic of China (P.R. China). Four types of diurnal variations (afternoon peak, night peak, afternoon-night double peaks and random pattern) of CH4 emission rates have been found. The first pattern was normally found in clear weather, the second and the third types were only found occasionally in particular place, while the fourth were found in cloudy or rainy weather. Due to the irregular pattern of the methane production observed in the morning-afternoon comparison experiment, the transport pathway influenced by certain factors, may be the major factor governing the diurnal variation of CH4 emission. Seasonal variation patterns of CH4 emission differ slightly with different field locations, where climate system, cropping system and other factors are different. Two and three emission peaks were generally found during single and early rice vegetation periods, with the peak magnitude and time of appearance differing to small degree in individual sites. A decreasing trend of seasonal variation was always observed in late rice season. A combination of seasonal change of transport efficiency and that of CH4 production rate in the paddy soil explains well the CH4 emission. The role of rice plant in transporting CH4 varied over a large range in different rice growing stages. The reasons for internnual changes of CH4 flux are not yet clear.Great spatial variation of the CH4 emission has been found, which can be attributed to the differences in soil type and soil properties, local climate condition, rice species, fertilizer and water treatment. Experiments showed that while the application of some mineral fertilizers will reduce the CH4 emission and CH4 production in the soil, the application of organic manure will enhance CH4 emission and CH4 production in the soil. Any measures which can get off easily decomposed carbon from organic manure may reduce C supply for CH4 production, and hence reduce CH4 emission. Fermented sludges from biogas generators and farmyard-stored manure seem to be promising. In some parts of China, separate application of the organic and mineral manure instead of mixed application could be another option. Frequent Scientific drainage and ridge cultivation, which are often used water management techniques in Chinese rice agriculture, have been proved in the experiments to be a very efficient mitigation measures to reduce CH4 emission from rice fields.By summarizing the present available data, China's rice fields contribute about 13.3 Tg yr–1 (11.4–15.2) CH4 to the atmosphere. The total methane emission from global rice fields can be estimated 33–60 Tg yr–1, much less than the estimates made before.If we extrapolate the measured data in China with a consideration of measured data in other Asian country, the total global emission of CH4 from rice fields are estimated to be about 35–60 Tg yr–1 With 2 Figures  相似文献   

13.
New CH4 emission data from a number of Northern and Southern Hemispheric, tropical and temperate termites, are reported, which indicate that the annual global CH4 source due to termites is probably less than 15 Tg. The major uncertainties in this estimate are identified and found to be substantial. Nevertheless, our results suggest that termites probably account for less than 5% of global CH4 emissions.  相似文献   

14.
Methane emission from West Siberian forest-steppe and subtaiga reed fens (that is, fens dominated by Phragmites australis) observed in summer 2013, is considered using the static chamber method. The obtained medians of CH4 fluxes varied from -0.08 to 2.7 mg CH4/m2 per hour. Eenvironmental factors affecting methane emission are analyzed. It was found that CH4 emissions from the reed fens correlate only with the concentration of salt ions in the wetland water and with the plant community structure. The latter probably also depends on water salinity. It was revealed that in fens the ratio between fluxes of CH4 and CO2 does not depend on the water table level that contradicts the general pattern simulated by mathematical models of CH4 emission. It was found that Phragmites australis fens and similar ecosystems should be considered as a separate wetland class from the point of view of methane emission study.  相似文献   

15.
Methane(CH4) is one of the most important greenhouse gases in the atmosphere, making it worthwhile to study its temporal and vertical distributions in source areas, e.g., North China. For this purpose, a ground-based high-resolution Fourier transform infrared spectrometer(FTIR), the Bruker IFS 125 HR, along with an in-situ instrument, the Picarro G2301, were deployed in Xianghe County(39.8°N,117.0°E), Hebei Province, China. Data have been recorded since June2018. For the FTIR measurements, we used two observation modes to retrieve the mole fraction of CH4: the Total Carbon Column Observing Network(TCCON) method(retrieval algorithm: GGG2014), and the Network for the Detection of Atmospheric Composition Change(NDACC) method(retrieval algorithm: SFIT4). Combining FTIR with in-situ measurements, we found the temporal and vertical distributions of atmospheric CH4 within three vertical layers(near the ground, in the troposphere, and in the stratosphere), and throughout the whole atmosphere. Regarding the diurnal variation of CH4 near the ground, the concentration at night was higher than during the daytime. Regarding the seasonal variation,CH4 was low in spring and high in summer, for all three vertical layers. In addition, there was a peak of CH4 in winter near the ground, both in the troposphere and the whole atmosphere. We found that variation of CH4 in the tropospheric column was close to that of the in-situ measurements near the ground. Furthermore, the variations of CH4 in the stratospheric column could be influenced by vertical motions, since it was higher in summer and lower in winter.  相似文献   

16.
Methane emission from rice paddies   总被引:3,自引:0,他引:3  
Methane release rates from rice paddies have been measured in Andalusia, Spain, during almost a complete vegetation period in 1982 using the static box system. The release rates ranged between 2 and 14 mg/m2/h and exhibited a strong seasonal variation with low values during the tillering stage and shortly before harvest, while maximum values were observed at the end of the flowering stage. The CH4 release rate, averaged over the complete vegetation period, accounted for 4 mg/m2/h which results in a worldwide CH4 emission from rice paddies of 35–59×1012 g/yr if we assume that the observed CH4 release rates are representative of global conditions. The CH4 release rates showed diurnal variations with higher values late in the afternoon which were most likely caused by temperature variations within the upper layers of the paddy soils. Approximately 95% of the CH4 emitted into the atmosphere by rice paddies was due to transport through the rice plants. Transport by bubbles or diffusion through the paddy water was of minor importance. Incubation experiments showed that CH4 was neither produced nor consumed in the paddy water. The relase of CH4 from rice paddies caused a diurnal variation of CH4 in ambient air within the rice-growing area with maximum values of up to 2.3 ppmv during the early morning, compared to average daytime values of 1.75 ppmv.  相似文献   

17.
张仁健 《气象学报》2002,60(5):620-624
应用作者建立的全球二维大气化学模式 ,采用 2种CH4 排放源的长期增长方案 ,同时考虑了CH4 排放源以及对OH自由基浓度有重要影响的CO和NOx 排放源的长期变化 ,模拟了CH4 和OH从 1840~ 2 0 2 0年的长期变化趋势。考虑了世界人口增长的排放源方案可以更好地模拟CH4 的长期变化 ,模拟结果表明 ,工业革命前的大气CH4 浓度和年排放总量分别为 76 0× 10 -9(V/V)和 2 80× 10 9kg ,1991年大气CH4 的浓度和年排放总量分别为16 11.9× 10 -9(V/V)和 5 33 .9× 10 9kg ,对流层OH自由基数浓度从 1840年的 7.17× 10 5分子数 /cm3 下降到 1991年的 5 .79× 10 5分子数 /cm3,降低了 19%。工业革命以来大气CH4 的增长一方面是由于CH4 排放源的增长 ,另一方面是由于大气OH浓度的下降。  相似文献   

18.
Measurements of carbon dioxide(CO2), methane(CH4), and carbon monoxide(CO) are of great importance in the Qinghai-Tibetan region, as it is the highest and largest plateau in the world affecting global weather and climate systems. In this study, for the first time, we present CO2, CH4, and CO column measurements carried out by a Bruker EM27/SUN Fourier-transform infrared spectrometer(FTIR) at Golmud(36.42°E, 94.91°N, 2808 m) in August 2021. The mean and...  相似文献   

19.
A two-dimensional global chemistry model is developed to study the distribution and long-term trends of methane. The model contains 34 species and 104 chemical and photochemical reactions. Using the model, the long-term trends of CH4, CO and OH in atmosphere are simulated, comparison between the model and observations shows that the simulation is successful. Experiments are done to investigate the causes of dramatic decrease in the growth rate of CH4 in 1992 such as OH increase due to stratospheric ozone depletion, decrease of temperature in the troposphere due to Mount Pinatubo eruption and descendent of CH4 sources fluxes. A new explanation is proposed and verified by this model that the decrease of CO emission plays an important role for the abnormal growth rate of CH4 in 1992. We find that the decreases of CH4 and CO emissions are the main reasons for the sudden decrease of growth rate of CH4 in 1992, which account for 73% and 27% respectively.  相似文献   

20.
Very few studies have conducted long-term observations of methane (CH4) flux over forest canopies. In this study, we continuously measured CH4 fluxes over an evergreen coniferous (Japanese cypress) forest canopy throughout 1?year, using a micrometeorological relaxed eddy accumulation (REA) system with tuneable diode laser spectroscopy (TDLS) detection. The Japanese cypress forest, which is a common forest type in warm-temperate Asian monsoon regions with a wet summer, switched seasonally between a sink and source of CH4 probably because of competition by methanogens and methanotrophs, which are both influenced by soil conditions (e.g., soil temperature and soil moisture). At hourly to daily timescales, the CH4 fluxes were sensitive to rainfall, probably because CH4 emission increased and/or absorption decreased during and after rainfall. The observed canopy-scale fluxes showed complex behaviours beyond those expected from previous plot-scale measurements and the CH4 fluxes changed from sink to source and vice versa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号