首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 757 毫秒
1.
We present the results of radio sounding observations probing the inner solar wind near the minimum of the solar-activity cycle, using polarized pulses from PSR B0525+21 and PSR B0531+21 received when the lines of sight toward these pulsars were close to the Sun. The observations were obtained in June 2005 and June 2007 on the Large Phased Array of the Lebedev Physical Institute at 111 MHz. An upper limit for the scattering of giant pulses from PSR B0531+21 due to their passage through the turbulent solar-wind plasma is determined. The arrival-time delays for pulses from PSR B0531+21 are used to derive the radial dependence of the mean density of the circumsolar plasma. The resulting density distribution indicates that the acceleration of fast, high-latitude solar-wind outflows continues to heliocentric distances of 5–10R , where R is the solar radius. The mean plasma density at heliocentric distances of about 5R is 1.4 × 104 cm?3, substantially lower than at the solar-activity maximum. This is associated with the presence of polar coronal holes. The Faraday rotation measure at heliocentric distances of 6–7R is estimated. Deviations of the spatial distribution of the magnetic field from spherical symmetry are comparatively modest in the studied range of heliocentric distances.  相似文献   

2.
Low-frequency pulsations of 22 and 37 GHz microwave radiation detected during solar flares are analyzed. Several microwave bursts observed at the Metsähovi Radio Observatory are studied with time resolutions of 100 and 50 ms. A fast Fourier transformation with a sliding window and the Wigner-Ville method are used to obtain frequency-time diagrams for the low-frequency pulsations, which are interpreted as natural oscillations of coronal magnetic loops; the dynamical spectra of the pulsations are synthesized for the first time. Three types of low-frequency fluctuations modulating the flare microwave radiation can be distinguished in the observations. First, there are fast and slow magneto-acoustic oscillations with periods of 0.5–0.8 s and 200–280 s, respectively. The fast magneto-acoustic oscillations appear as trains of narrow-band signals with durations of 100–200 s, a positive frequency drift dν/dt=0.25 MHz/min, and frequency splitting δν=0.01–0.05 Hz. Second, there are natural oscillations of the coronal magnetic loops as equivalent electrical circuits. These oscillations have periods of 0.5–10 s and positive or negative frequency drift rates dν/dt=8×10?3 Hz/min or dν/dt=?1.3×10?2 Hz/min, depending on the phase of the radio outburst. Third, there are modulations of the microwave radiation by short periodic pulses with a period of 20 s. The dynamical spectra of the low-frequency pulsations supply important information about the parameters of the magnetic loops: the ratio of the loop radius to its length r/L≈0.1, the plasma parameter β≈10?3, the ratio of the plasma densities outside and inside the loop ρei≈10?2, and the electrical current flowing along the loop I≈1012 A.  相似文献   

3.
Equatorward deviations of coronal streamers at solar minima and poleward deviations at solar maxima are interpreted as the effects of changes in the general topology of the global solar magnetic field. The streamer axis is located on the neutral surface of the radial magnetic field B r = 0, and the neutral surfaces deviate toward the field null points. The magnetic configuration with a null point (line) located at the equator is typical for the solar minima, while the null points are located on the rotational axis of the Sun at the solar maxima.  相似文献   

4.
Zaitsev  V. V.  Shibasaki  K. 《Astronomy Reports》2005,49(12):1009-1017

SOHO and TRACE data have shown that the coronal plasma is heated most actively near sunspots, in magnetic loops that issue from the penumbral region. The source of heating is nonuniform in height, and its power is maximum near the footpoints of the magnetic loops. The heating process is typically accompanied by the injection of dense chromospheric plasma into the coronal parts of the magnetic loops. It is important that the radiative losses cannot be compensated for via electron thermal conduction in the loops, which have temperatures of 1.0–1.5 MK; therefore, some heating source must operate throughout the entire length of the loop, balancing radiative losses and maintaining a quasi-steady state of the loop over at least several hours. As observations show, the plasma density inside the loops exceeds the density of the ambient plasma by more than an order of magnitude. It is supposed that the enhanced plasma density inside the loops results from the development of the ballooning mode of a flute-type instability in the sunspot penumbra, where the plasma of the inner sunspot region, with β i ? 1, comes into contact with the dense chromospheric plasma, which has β e ? β i (β is the gas-to-magnetic pressure ratio). As the chromospheric plasma penetrates into the potential field of the sunspot, the generated diamagnetic currents balance the excess gas pressure. These currents efficiently decay due to the Cowling conductivity. Even if neutrals are few in number in the plasma (accounting for less than 10?5 of the total mass density), this conductivity ensures a heating rate that exceeds the rate of the normal Joule dissipation of diamagnetic currents by 7–8 orders of magnitude. Helium is an important factor in the context of plasma heating in magnetic loops. Its relatively high ionization potential, while not forbidding dielectronic recombination, ensures a sufficiently high number of neutrals in the coronal plasma and maintains a high heating rate due to the Cowling conductivity, even at coronal temperatures. The heating results from the “burning-out” of the nonpotential component of the magnetic field of the coronal magnetic loops. This mechanism provides the necessary heating rate for the plasma inside the loops if the loops are thin enough (with thickness of the order of 105–106 cm). This may imply that the observed (1–5) × 108-cm-thick loops consist of numerous hot, thin threads. For magnetic loops in hydrostatic equilibrium, the calculated heating function exponentially decreases with height on characteristic scales a factor of 1.8 smaller than the total-pressure scale height, since the scale heights for the total pressure and for the 4He partial pressure are different. The heating rate is proportional to the square of the plasma pressure in the loop, in agreement with observational data.

  相似文献   

5.
The thermal evolution of 10-Å phase Mg3Si4O10(OH)2·H2O, a phyllosilicate which may have an important role in the storage/release of water in subducting slabs, was studied by X-ray single-crystal diffraction in the temperature range 116–293 K. The lattice parameters were measured at several intervals both on cooling and heating. The structural model was refined with intensity data collected at 116 K and compared to the model refined at room temperature. As expected for a layer silicate on cooling in this temperature range, the a and b lattice parameters undergo a small linear decrease, α a  = 1.7(4) 10?6 K?1 and α b  = 1.9(4) 10?6 K?1, where α is the linear thermal expansion coefficient. The greater variation is along the c axis and can be modeled with the second order polynomial c T  = c 293(1 + 6.7(4)10?5 K?1ΔT + 9.5(2.5)10?8 K?2T)2) where ΔT = T ? 293 K; the monoclinic angle β slightly increased. The cell volume thermal expansion can be modeled with the polynomial V T  V 293 (1 + 8.0 10?5 K?1 ΔT + 1.4 10?7 K?2T)2) where ΔT = T ? 293 is in K and V in Å3. These variations were similar to those expected for a pressure increase, indicating that T and P effects are approximately inverse. The least-squares refinement with intensity data measured at 116 K shows that the volume of the SiO4 tetrahedra does not change significantly, whereas the volume of the Mg octahedra slightly decreases. To adjust for the increased misfit between the tetrahedral and octahedral sheets, the tetrahedral rotation angle α changes from 0.58° to 1.38°, increasing the ditrigonalization of the silicate sheet. This deformation has implications on the H-bonds between the water molecule and the basal oxygen atoms. Furthermore, the highly anisotropic thermal ellipsoid of the H2O oxygen indicates positional disorder, similar to the disorder observed at room temperature. The low-temperature results support the hypothesis that the disorder is static. It can be modeled with a splitting of the interlayer oxygen site with a statistical distribution of the H2O molecules into two positions, 0.6 Å apart. The resulting shortest Obas–OW distances are 2.97 Å, with a significant shortening with respect to the value at room temperature. The low-temperature behavior of the H-bond system is consistent with that hypothesized at high pressure on the basis of the Raman spectra evolution with P.  相似文献   

6.
Known models proposed to explain the high space velocities of pulsars based on asymmetry of the transport coefficients of different sorts of neutrinos or electromagnetic radiation can be efficient only in the presence of high magnetic fields (to 1016 G) or short rotation periods for the neutron stars (of the order of 1 ms). This current study shows that the observed velocities are not correlated with either the pulsar periods or their surface magnetic fields. The initial rotation periods are estimated in a model for the magnetedipolar deceleration of their spin, aßsuming that the pulsar ages are equal to their kinematic ages. The initial period distribution is bimodal, with peaks at 5 ms and 0.5 s, and similar to the current distribution of periods. It is shown that asymmetry of the pulsar electromagnetic radiation is insufficient to give rise to additional acceleration of pulsars during their evolution after the supernova explosion that gave birth to them. The observations testify to deceleration of the motion, most likely due to the influence of the interstellar medium and interactions with nearby objects. The time scale for the exponential decrease in the magnetic field τD and in the angle between the rotation axis and magnetic moment τß are estimated, yielding τβ = 1.4 million years. The derived dependence of the transverse velocity of a pulsar on the angle between the line of sight and the rotation axis of the neutron star corresponds to the expected dependence for acceleration mechanisms associated with asymmetry of the radiation emitted by the two poles of the star.  相似文献   

7.
We have modeled the magnetic fields of the slowly rotating stars HD 116458 and HD 126515 using the “magnetic charge” technique. HD 116458 has a small angle between its rotation axis and dipole axis (β = 12°), whereas this angle is large for HD 126515 (β = 86°). Both stars can be described with a decentered-dipole model, with the respective displacements being r = 0.07 and r = 0.24 in units of the stellar radius. The decentered-dipole model is able to satisfactorily explain the phase relations for the effective field, Be(P), and the mean surface field, Bs(P), for both stars, along with the fact that the Be(P) phase relation for HD 126515 is anharmonic. We discuss the role of systematic measurement errors possibly resulting from instrumental or methodical effects in one or both of the phase relations. The displacement of the dipole probably reflects real asymmetry of the stellar field structure, and is not due to measurement errors. Using both phase relations, Be(P) and Bs(P), in the modeling considerably reduces the influence of the nonuniform distribution of chemical elements on the stellar surface.  相似文献   

8.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

9.
The mixing of metals in the intergalactic gas when a galaxy with a metal-rich envelope moves through the intergalactic medium is analyzed. Two simple models for the initial distribution of metals are considered. In the first case, the metals are concentrated in a fairly thin envelope with thickness ΔR s =1 kpc, outer radius R s =31 kpc, and metallicity Z=10?3. In the second case, material with the same metallicity uniformly fills an entire spherical region of radius R s . After 2.85 Gyr, the metals are distributed over a fairly extended volume with a typical size of ?200 kpc in the direction of the motion of the intergalactic gas, with a mean metallicity of ?4.6×10?4 in metal-enriched regions. However, the distribution of metals remains extremely nonuniform, so that the main contribution to the overall metallicity is provided by metal-rich islands Z?6×10?4 that occupy only ~10% of the total mixing volume. Moreover, metal-free regions remain in this volume.  相似文献   

10.
Effective soil thermal conductivity (λ eff) describes the ability of a multiphase soil to transmit heat by conduction under unit temperature gradient. It is a critical parameter for environmental science, earth and planetary science, and engineering applications. Numerous models are available in the literature, but their applicability is generally restricted to certain soil types or water contents (θ). The objective of this study was to develop a new model in the similar form of the Johansen 1975 model to simulate the λ eff(θ) relationship of soils of various soil textures and water contents. An exponential type model with two parameters is developed and a new function for calculating dry soil thermal conductivity is presented. Performance of the new model and six other normalized models were evaluated with published datasets. The results show that the new model is able to well mimic λ eff(θ) relationship of soils from sand to silt loam and from oven dry to full saturation. In addition, it has the best performance among the seven models under test (with root-mean-square error of 0.059 W m?1 °C?1, average deviations of 0.0009 W m?1 °C?1, and Nash–Sutcliffe efficiency of 0.994). The new model has potential to improve the reliability of soil thermal conductivity estimation and be incorporated into numerical modeling for environmental, earth and engineering studies.  相似文献   

11.
The emergence of antibiotics residues in pharmaceutical industrial wastewater has been a significant environment problem. However, current methods of treating antibiotic-polluted wastewater are inefficient, of high cost and time-consuming. In this study, highly effective enzymatic Fe3O4 magnetic nanoparticles were developed, which is extremely simple and can degrade antibiotics in a fast manner at a low cost. β-Lactamase, a representative enzyme for β-lactam antibiotic degradation, was covalently immobilized on the surface of magnetic nanoparticles modified with amino groups by a simple cross-linking process. The immobilized β-lactamase displayed a wider pH and temperature range for penicillin G degradation than the free enzyme. Meanwhile, the thermostability and storage stability of the immobilized β-lactamase were improved. Fifty milligrams magnetic nanoparticles immobilized with β-lactamase can thoroughly degrade 100 mL penicillin G (5–50 mg L?1) within 5 min. Even if the β-lactamase immobilized on the nanoparticles was reused 35 times in the 5 mg L?1 penicillin G solution, it still kept more than 95% degradation efficiency. These suggest that magnetic nanoparticles immobilized with β-lactamase have a sufficient capacity for degrading antibiotics in wastewater and will serve as a practical and economical solution to antibiotic pollution in pharmaceutical industrial wastewater treatment.  相似文献   

12.
Between 1994 and 2006, we obtained uniform spectroscopic observations of SS 433 in the region of Hα. We determined Doppler shifts of the moving emission lines, Hα + and Hα ?, and studied various irregularities in the profiles for the moving emission lines. The total number of Doppler shifts measured in these 13 years is 488 for Hα ? and 389 for Hα +. We have also used published data to study possible long-term variations of the SS 433 system, based on 755 Doppler shifts for Hα ? and 630 for Hα + obtained over 28 years. We have derived improved kinematic model parameters for the precessing relativistic jets of S S 433 using five-and eight-parameter models. On average, the precession period was stable during the 28 years of observations (60 precession cycles), at 162.250d ± 0.003d. Phase jumps of the precession period and random variations of its length with amplitudes of ≈6% and ≈1%, respectively, were observed, but no secular changes in the precession period were detected. The nutation period, P nut = 6.2876d ± 0.00035d, and its phase were stable during 28 years (more than 1600 nutation cycles). We find no secular variations of the nutation cycle. The ejection speed of the relativistic jets, v, was, on average, constant during the 28 years, β = v/c = 0.2561 ± 0.0157. No secular variation of β is detected. In general, S S 433 demonstrates remarkably stable long-term characteristics of its precession and nutation, as well as of the central “engine” near the relativistic object that collimates the plasma in the jets and accelerates it to v = 0.2561c. Our results support a model with a “slaved” accretion disk in S S 433, which follows the precession of the optical star’s rotation axis.  相似文献   

13.
The electrical conductivity of monocrystalline triphylite, Li(Fe2+,Mn2+)PO4, with the orthorhombic olivine-type structure was measured parallel (∥) to the [010] direction and ∥ [001] (space group Pnma), between ~400 and ~700 K. Electrical measurements on triphylite are of technological interest because LiFePO4 is a promising electrode material for rechargeable Li batteries. Triphylite was examined by electron microprobe, ICP atomic emission spectroscopy, X-ray diffraction, Mössbauer spectroscopy and microscopic analysis. The DC conductivity σDC was determined from AC impedance data (20 Hz–1 MHz) extrapolating to zero frequency. Triphylite shows σDC with activated behavior measured ∥ [010] between ~500 and ~700 K during the first heating up, with activation energy of E A = 1.52 eV; on cooling E A = 0.61 eV was found down to ~400 K and extrapolated σDC (295 K) ~10?9 Ω?1cm?1; ∥ [001] E A = 0.65 eV and extrapolated σDC(295 K) ~10?9 to 10?10 Ω?1cm?1, measured during the second heating cycle. The enhanced AC conductivity relative to σDC at lower temperatures indicates a hopping-type charge transport between localized levels. Conduction during the first heating up is ascribed to ionic Li+ hopping. DC polarization experiments showed conduction after the first heating up to be electronic related to lowered activation energy. Electronic conduction appears to be coupled with the presence of Li+ vacancies and Fe3+, formed by triphylite alteration. For comparison, σDC was measured on the synthetic compound LiMgPO4 with olivine-type structure, where also an activated behavior of σDC with E A ~1.45 eV was observed during heating and cooling due to ionic Li+ conduction; here no oxidation can occur associated with formation of trivalent cations.  相似文献   

14.
Stable isotope data of precipitation (δ18Op and deuterium excess), drip water (δ18Od), and modern calcite precipitates (δ18Oc and δ13Cc) from Yongxing Cave, central China, are presented, with monthly sampling intervals from June 2013 to September 2016. Moderate correlations between the monthly variation of δ18Op values (from ??11.5 to ??0.7‰) and precipitation amount (r = ??0.59, n?=?34, p?<?0.01) and deuterium excess (r?=?0.39, n?=?31, p?<?0.01) imply a combined effect of changes in precipitation amount and atmospheric circulation. At five drip sites, the δ18Od values have a much smaller variability (from ??9.1 to ??7.5‰), without seasonal signals, probably a consequence of the mixing in the karst reservoir with a deep aquifer. The mean δ18Od value (??8.4‰) for all drip waters is significantly more negative than the mean δ18Op value (??6.9‰) weighted by precipitation amount, but close to the wet season (May to September) mean value (??8.3‰), suggesting that a threshold of precipitation amount must be exceeded to provide recharge. Calculation based on the equilibrium fractionation factor indicates that the δ18Oc values are not in isotopic equilibrium with their corresponding drip waters, with a range of disequilibrium effects from 0.4 to 1.4‰. The δ18Oc and δ13Cc values generally increase progressively away from the locus of precipitation on glass plates. The disequilibrium effects in the cave are likely caused by progressive calcite precipitation and CO2 degassing related to a high gradient of CO2 concentration between drip waters and cave air. Our study provides an important reference to interpret δ18Oc records from the monsoon region of China.  相似文献   

15.
The electrical conductivity of aqueous fluids containing 0.01, 0.1, and 1 M NaCl was measured in an externally heated diamond cell to 600 °C and 1 GPa. These measurements therefore more than double the pressure range of previous data and extend it to higher NaCl concentrations relevant for crustal and mantle fluids. Electrical conductivity was generally found to increase with pressure and fluid salinity. The conductivity increase observed upon variation of NaCl concentration from 0.1 to 1 M was smaller than from 0.01 to 0.1 M, which reflects the reduced degree of dissociation at high NaCl concentration. Measured conductivities can be reproduced (R 2 = 0.96) by a numerical model with log \(\sigma\) = ?1.7060– 93.78/T + 0.8075 log c + 3.0781 log \(\rho\) + log \(\varLambda\) 0(T, \(\rho\)), where \(\sigma\) is the conductivity in S m?1, T is temperature in K, c is NaCl concentration in wt%, \(\rho\) is the density of pure water (in g/cm3) at given pressure and temperature, and \(\varLambda\) 0 (T, \(\rho\)) is the molar conductivity of NaCl in water at infinite dilution (in S cm2 mol?1), \(\varLambda\) 0 = 1573–1212 \(\rho\) + 537 062/T–208 122 721/T 2. This model allows accurate predictions of the conductivity of saline fluids throughout most of the crust and upper mantle; it should not be used at temperatures below 100 °C. In general, the data show that already a very small fraction of NaCl-bearing aqueous fluid in the deep crust is sufficient to enhance bulk conductivities to values that would be expected for a high degree of partial melting. Accordingly, aqueous fluids may be distinguished from hydrous melts by comparing magnetotelluric and seismic data. H2O–NaCl fluids may enhance electrical conductivities in the deep crust with little disturbance of v p or v p/v s ratios. However, at the high temperatures in the mantle wedge above subduction zones, the conductivity of hydrous basaltic melts and saline aqueous fluids is rather similar, so that distinguishing these two phases from conductivity data alone is difficult. Observed conductivities in forearc regions, where temperatures are too low to allow melting, may be accounted for by not more than 1 wt% of an aqueous fluid with 5 wt% NaCl, if this fluid forms a continuous film or fills interconnected tubes.  相似文献   

16.
The classical aquitard-drainage model COMPAC has been modified to simulate the compaction process of a heterogeneous aquitard consisting of multiple sub-units (Multi-COMPAC). By coupling Multi-COMPAC with the parameter estimation code PEST++, the vertical hydraulic conductivity (K v) and elastic (S ske) and inelastic (S skp) skeletal specific-storage values of each sub-unit can be estimated using observed long-term multi-extensometer and groundwater level data. The approach was first tested through a synthetic case with known parameters. Results of the synthetic case revealed that it was possible to accurately estimate the three parameters for each sub-unit. Next, the methodology was applied to a field site located in Changzhou city, China. Based on the detailed stratigraphic information and extensometer data, the aquitard of interest was subdivided into three sub-units. Parameters K v, S ske and S skp of each sub-unit were estimated simultaneously and then were compared with laboratory results and with bulk values and geologic data from previous studies, demonstrating the reliability of parameter estimates. Estimated S skp values ranged within the magnitude of 10?4 m?1, while K v ranged over 10?10–10?8 m/s, suggesting moderately high heterogeneity of the aquitard. However, the elastic deformation of the third sub-unit, consisting of soft plastic silty clay, is masked by delayed drainage, and the inverse procedure leads to large uncertainty in the S ske estimate for this sub-unit.  相似文献   

17.
Timing of highly stable millisecond pulsars provides the possibility of independently verifying terrestrial time scales on intervals longer than a year. An ensemble pulsar time scale is constructed based on pulsar timing data obtained on the 64-m Parkes telescope (Australia) in 1995–2010. Optimal Wiener filters were applied to enhance the accuracy of the ensemble time scale. The run of the time-scale difference PTens?TT(BIPM2011) does not exceed 0.8 ± 0.4 μs over the entire studied time interval. The fractional instability of the difference PTens?TT(BIPM2011) over 15 years is σ z = (0.6 ± 1.6) × 10?15, which corresponds to an upper limit for the energy density of the gravitational-wave background Ω g h2 ~ 10?10 and variations in the gravitational potential ~10?15 Hz at the frequency 2 × 10?9 Hz.  相似文献   

18.
To evaluate the impact of invading seagrass on biogeochemical processes associated with sulfur cycles, we investigated the geochemical properties and sulfate reduction rates (SRRs) in sediments inhabited by invasive warm affinity Halophila nipponica and indigenous cold affinity Zostera marina. A more positive relationship between SRR and below-ground biomass (BGB) was observed at the H. nipponica bed (SRR = 0.6809 × BGB ? 4.3162, r 2 = 0.9878, p = 0.0006) than at the Z. marina bed (SRR = 0.3470 × BGB ? 4.0341, r 2 = 0.7082, p = 0.0357). These results suggested that SR was more stimulated by the dissolved organic carbon (DOC) exuded from the roots of H. nipponica than by the DOC released from the roots of Z. marina. Despite the enhanced SR in spring-summer, the relatively lower proportion (average, 20%) of acid-volatile sulfur (AVS) in total reduced sulfur and the strong correlation between total oxalate-extractable Fe (Fe(oxal)) and chromium-reducible sulfur (CRS = 0.2321 × total Fe(oxal) + 1.8180, r 2 = 0.3344, p = 0.0076) in the sediments suggested the rapid re-oxidation of sulfide and precipitation of sulfide with Fe. The turnover rate of the AVS at the H. nipponica bed (0.13 day?1) was 2.5 times lower than that at the Z. marina bed (0.33 day?1). Together with lower AVS turnover, the stronger correlation of SRR to BGB in the H. nipponica bed suggests that the extension of H. nipponica resulting from the warming of seawater might provoke more sulfide accumulation in coastal sediments.  相似文献   

19.
The solar event SOL2012–10–23T03:13, which was associated with a X1.8 flare without an accompanying coronal mass ejection (CME) and with a Type II radio burst, is analyzed. A method for constructing the spatial and temporal profiles of the difference brightness detected in the AIA/SDOUVand EUV channels is used together with the analysis of the Type II radio burst. The formation and propagation of a region of compression preceded by a collisional shock detected at distances R < 1.3R from the center of the Sun is observed in this event (R is the solar radius). Comparison with a similar event studied earlier, SOL2011–02–28T07:34 [1], suggests that the region of compression and shock could be due to a transient (impulsive) action exerted on the surrounding plasma by an eruptive, high-temperature magnetic rope. The initial instability and eruption of this rope could be initiated by emerging magnetic flux, and its heating from magnetic reconnection. The cessation of the eruption of the rope could result from its interaction with surrounding magnetic structures (coronal loops).  相似文献   

20.
Trajectories of eruptive prominences are compared with the shapes of coronal neutral surfaces calculated in a potential approximation using photospheric measurements. Space-based Solar Dymamics Observatory and STEREO observations carried out at different viewing angles enable a precise determination of a prominence’s position at successive times during its eruption. In the initial segments of their trajectories, eruptive prominences move along neutral surfaces (Br = 0) of the potential coronal magnetic field. This can be used to predict the directions of subsequent coronal mass ejections and to estimate their geoefficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号