首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
High-resolution observations of the inner regions of barred disc galaxies have revealed many asymmetrical, small-scale central features, some of which are best described as secondary bars. Because orbital time-scales in the galaxy centre are short, secondary bars are likely to be dynamically decoupled from the main kiloparsec-scale bars. Here we show that regular orbits exist in such doubly barred potentials, and that they can support the bars in their motion. We find orbits in which particles remain on loops : closed curves which return to their original positions after two bars have come back to the same relative orientation. Stars trapped around stable loops could form the building blocks for a long-lived, doubly barred galaxy. Using the loop representation, we can find which orbits support the bars in their motion, and the constraints on the sizes and shapes of self-consistent double bars. In particular, it appears that a long-lived secondary bar may exist only when an inner Lindblad resonance is present in the primary bar, and that it would not extend beyond this resonance.  相似文献   

2.
The Kuzmin–Toomre family of discs is used to construct potential–density pairs that represent flat ring structures in terms of elementary functions. Systems composed of two concentric flat rings, a central disc surrounded by one ring and a ring with a centre of attraction are also presented. The circular velocity of test particles and the epicyclic frequency of small oscillations about circular orbits are calculated for these structures. A few examples of three-dimensional potential–density pairs of 'inflated' flat rings (toroidal mass distributions) are presented.  相似文献   

3.
The vertical profiles of disc galaxies are built by the material trapped around stable periodic orbits, which form their 'skeletons'. Therefore, knowledge of the stability of the main families of periodic orbits in appropriate 3D models enables one to predict possible morphologies for edge-on disc galaxies. In a pilot survey we compare the orbital structures that lead to the appearance of 'peanut'- and 'X'-like features with the edge-on profiles of three disc galaxies (IC 2531, NGC 4013 and UGC 2048). The subtraction from the images of a model representing the axisymmetric component of the galaxies reveals the contribution of the non-axisymmetric terms. We find a direct correspondence between the orbital profiles of 3D bars in models and the observed main morphological features of the residuals. We also apply a simple unsharp masking technique in order to study the sharpest features of the images. Our basic conclusion is that the morphology of the boxy 'bulges' of these galaxies can be explained by considering disc material trapped around stable 3D periodic orbits. In most models, these building-block periodic orbits are bifurcated from the planar central family of a non-axisymmetric component, usually a bar, at low-order vertical resonances. In such a case, the boxy 'bulges' are parts of bars seen edge-on. For the three galaxies we study, the families associated with the 'peanut' or 'X'-shape morphology are probably bifurcations at the vertical 2/1 or 4/1 resonance.  相似文献   

4.
We investigate the morphological relation between the orbits of the central family of periodic orbits ( x 1 family) and the bar itself using models of test particles moving in a barred potential. We show that different bar morphologies may have as a backbone the same set of x 1 periodic orbits. We point out that by populating initially axisymmetric stellar discs exponentially with test particles in circular, or almost circular motion, we may end up with a response bar which reveals a shape different in crucial details from that of the individual stable x 1 orbits. For example, a bar model in which the x 1 orbits are pure ellipses may have a much more complicated response morphology. This depends on the particular invariant curves around x 1, which are populated in each model.  相似文献   

5.
We study the orbital structure in a series of self-consistent N -body configurations simulating rotating barred galaxies with spiral and ring structures. We perform frequency analysis in order to measure the angular and the radial frequencies of the orbits at two different time snapshots during the evolution of each N -body system. The analysis is done separately for the regular and the chaotic orbits. We thereby identify the various types of orbits, determine the shape and percentages of the orbits supporting the bar and the ring/spiral structures, and study how the latter quantities change during the secular evolution of each system. Although the frequency maps of the chaotic orbits are scattered, we can still identify concentrations around resonances. We give the distributions of frequencies of the most important populations of orbits. We explore the phase-space structure of each system using projections of the 4D surfaces of section. These are obtained via the numerical integration not only of the orbits of test particles, but also of the real N -body particles. We thus identify which domains of the phase space are preferred and which are avoided by the real particles. The chaotic orbits are found to play a major role in supporting the shape of the outer envelope of the bar as well as the rings and the spiral arms formed outside corotation.  相似文献   

6.
We study the dynamical interactions of mass systems in equilibrium under their own gravity that mutually exert and ex‐perience gravitational forces. The method we employ is to model the dynamical evolution of two isolated bars, hosted within the same galactic system, under their mutual gravitational interaction. In this study, we present an analytical treatment of the secular evolution of two bars that oscillate with respect to one another. Two cases of interaction, with and without geometrical deformation, are discussed. In the latter case, the bars are described as modified Jacobi ellipsoids. These triaxial systems are formed by a rotating fluid mass in gravitational equilibrium with its own rotational velocity and the gravitational field of the other bar. The governing equation for the variation of their relative angular separation is then numerically integrated, which also provides the time evolution of the geometrical parameters of the bodies. The case of rigid, non‐deformable, bars produces in some cases an oscillatory motion in the bodies similar to that of a harmonic oscillator. For the other case, a deformable rotating body that can be represented by a modified Jacobi ellipsoid under the influence of an exterior massive body will change its rotational velocity to escape from the attracting body, just as if the gravitational torque exerted by the exterior body were of opposite sign. Instead, the exchange of angular momentum will cause the Jacobian body to modify its geometry by enlarging its long axis, located in the plane of rotation, thus decreasing its axial ratios. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
Lopsidedness is a common feature in galaxies, both in the distribution of light and in the kinematics. We investigate the kinematics of a model for lopsided galaxies that consists of a disc lying off-centre in a dark halo, and circling around the halo centre. We search for families of stable, closed, non-crossing orbits, and assume that gas in our galaxies moves on these orbits. Several of our models show strong lopsided gas kinematics, especially those in which the disc spins around its axis in a retrograde sense compared with its motion around the halo centre. We are able to reproduce the H  i velocity map of the kinematically lopsided galaxy NGC 4395.
The lopsidedness in our models is most pronounced in the models where the halo provides a relatively large fraction of the total mass at small radii. This may explain why the gas shows lopsidedness more frequently in late-type galaxies, which are dominated by dark matter. Surfaces of section show large regions of irregular orbits in the models where the halo density is low. This may indicate that these models are unstable.  相似文献   

8.
Many barred disc galaxies show rings of gas clouds and young stars thought to be in periodic orbits near the two-fold inner and outer Lindblad resonances (ILR and OLR) plus a four-fold ultraharmonic resonance (UHR) of the turning bar with oscillations about the disc orbital motion. To confirm and extend simulations by Schwarz and by Byrd et al. of resonance ring formation, we present an analytical formulation of the clouds' orbital motion which includes dissipative damping of oscillations relative to the local interstellar medium plus the rotation curve, bar pattern speed, and strength. Observed ring morphology matches our plots of periodic orbits where the density is enhanced but clouds do not collide violently. Pairs of 'outer rings' bracket the OLR. Dimpled outer rings like that of ESO 507-16 can be matched by plots with strong bars. Slightly dimpled outer rings like that of ESO 509-98 can be matched by weak bar plots. For flat rotation curves, a pair of two-fold rings bracket the ILR; the smaller can be identified with the tiny 'nuclear rings'. We find narrow UHR rings just outside this pair as well as just inside the OLR pair. We confirm the identification of the larger ILR ring and the inner UHR ring with 'inner rings'. Disagreeing with the common identification, we associate the dimpled outer rings with the UHR just inside the OLR. See ESO 507-16 as an example. We predict that damping can misalign the ILR and OLR rings relative to the bar as seen in our match to ESO 507-16. We find that for weak bars, if the linearly rising portion of the rotation curve is a significant fraction of the corotation radius, nuclear and inner rings are absent with outer rings still present. We show this in a match to ESO 509-98. Success of the matches to ESO 507-16 and 509-98 shows how the analytic formulation can be used to estimate disc orientation and pattern speed if rotation curve observations are available.  相似文献   

9.
10.
In this series of papers we investigate the orbital structure of three-dimensional (3D) models representing barred galaxies. In the present introductory paper we use a fiducial case to describe all families of periodic orbits that may play a role in the morphology of three-dimensional bars. We show that, in a 3D bar, the backbone of the orbital structure is not just the x1 family, as in two-dimensional (2D) models, but a tree of 2D and 3D families bifurcating from x1. Besides the main tree we have also found another group of families of lesser importance around the radial 3:1 resonance. The families of this group bifurcate from x1 and influence the dynamics of the system only locally. We also find that 3D orbits elongated along the bar minor axis can be formed by bifurcations of the planar x2 family. They can support 3D bar-like structures along the minor axis of the main bar. Banana-like orbits around the stable Lagrangian points build a forest of 2D and 3D families as well. The importance of the 3D x1-tree families at the outer parts of the bar depends critically on whether they are introduced in the system as bifurcations in z or in   z˙   .  相似文献   

11.
The behavior of the orbits in a galaxy model composed of an harmonic core and a strong bar potential is studied. Numerical calculations show that a large number of orbits display chaotic motion. These orbits are low angular momentun orbits. The percentage of chaotic orbits increases as the angular velocity of the system increases or the strength of the harmonic term decreases. A new dynamical parameter, the S(c) spectrum, is introduced and used to detect the island motion and the evolution of the sticky regions. Comparison to previously obtained results reveals the leading role of the new spectrum. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We compare two different N-body models simulating elliptical galaxies. Namely, the first model is a non-rotating triaxial N-body equilibrium model with smooth center, called SC model. The second model, called CM model, is derived from the SC by inserting a central mass in it, so that all possible differences between the two models are due to the effect of the central mass. The central mass is assumed to be mainly due to a massive central black hole of mass about 1% of the total mass of the galaxy. By using the fundamental frequency analysis, the two systems are thoroughly investigated as regards the types of orbits described either by test particles, or by the real particles of the systems at all the energy levels. A comparison between the orbits of test particles and the orbits of real particles at various energy levels is made on the rotation number plane. We find that extensive stable regions of phase space, detected by test particles remain empty, i.e. these regions are not occupied by real particles, while many real particles move in unstable regions of phase space describing chaotic orbits. We run self-consistently the two models for more than a Hubble time. During this run, in spite of the noise due to small variations of the potential, the SC model maintains (within a small uncertainly) the number of particles moving on orbits of each particular type. In contrast, the CM model is unstable, due to the large amount of mass in chaotic motion caused by the central mass. This system undergoes a secular evolution towards an equilibrium state. During this evolution it is gradually self-organized by converting chaotic orbits to ordered orbits mainly of the short axis tube type approaching an oblate spheroidal equilibrium. This is clearly demonstrated in terms of the fundamental frequencies of the orbits on the rotation number plane and the time evolution of the triaxiality index.  相似文献   

13.
Chaotic mixing in noisy Hamiltonian systems   总被引:1,自引:0,他引:1  
This paper summarizes an investigation of the effects of low-amplitude noise and periodic driving on phase-space transport in three-dimensional Hamiltonian systems, a problem directly applicable to systems like galaxies, where such perturbations reflect internal irregularities and/or a surrounding environment. A new diagnostic tool is exploited to quantify the extent to which, over long times, different segments of the same chaotic orbit evolved in the absence of such perturbations can exhibit very different amounts of chaos. First-passage-time experiments are used to study how small perturbations of an individual orbit can dramatically accelerate phase-space transport, allowing 'sticky' chaotic orbits trapped near regular islands to become unstuck on surprisingly short time‐scales. The effects of small perturbations are also studied in the context of orbit ensembles with the aim of understanding how such irregularities can increase the efficacy of chaotic mixing. For both noise and periodic driving, the effect of the perturbation scales roughly logarithmically in amplitude. For white noise, the details are unimportant: additive and multiplicative noise tend to have similar effects and the presence or absence of friction related to the noise by a fluctuation–dissipation theorem is largely irrelevant. Allowing for coloured noise can significantly decrease the efficacy of the perturbation, but only when the autocorrelation time, which vanishes for white noise, becomes so large that there is little power at frequencies comparable with the natural frequencies of the unperturbed orbit. This suggests strongly that noise-induced extrinsic diffusion, like modulational diffusion associated with periodic driving, is a resonance phenomenon. Potential implications for galaxies are discussed.  相似文献   

14.
We consider the possibility of particles being injected at the interior of a reconnecting current sheet (RCS), and study their orbits by dynamical systems methods. As an example we consider orbits in a 3D Harris type RCS. We find that, despite the presence of a strong electric field, a 'mirror' trapping effect persists, to a certain extent, for orbits with appropriate initial conditions within the sheet. The mirror effect is stronger for electrons than for protons. In summary, three types of orbits are distinguished: (i) chaotic orbits leading to escape by stochastic acceleration, (ii) regular orbits leading to escape along the field lines of the reconnecting magnetic component, and (iii) mirror-type regular orbits that are trapped in the sheet, making mirror oscillations. Dynamically, the latter orbits lie on a set of invariant KAM tori that occupy a considerable amount of the phase space of the motion of the particles. We also observe the phenomenon of 'stickiness', namely chaotic orbits that remain trapped in the sheet for a considerable time. A trapping domain, related to the boundary of mirror motions in velocity space, is calculated analytically. Analytical formulae are derived for the kinetic energy gain in regular or chaotic escaping orbits. The analytical results are compared with numerical simulations.  相似文献   

15.
We investigate the orbital structure in a class of three-dimensional (3D) models of barred galaxies. We consider different values of the pattern speed, of the strength of the bar and of the parameters of the central bulge of the galactic model. The morphology of the stable orbits in the bar region is associated with the degree of folding of the x1 characteristic. This folding is larger for lower values of the pattern speed. The elongation of rectangular-like orbits belonging to x1 and to x1-originated families depends mainly on the pattern speed. A detailed investigation of the trees of bifurcating families in the various models shows that major building blocks of 3D bars can be supplied by families initially introduced as unstable in the system, but becoming stable at another energy interval. In some models without radial and vertical 2:1 resonances we find, except for the x1 and x1-originated families, also families related to the z -axis orbits, which support the bar. Bifurcations of the x2 family can build a secondary 3D bar along the minor axis of the main bar. This is favoured in the slowly rotating bar case.  相似文献   

16.
In the present paper we apply a new method of distinction between ordered and chaotic motion in galactic potentials. The method uses the Fourier Transform of a series of time intervals each one representing the time that elapsed between two successive points on the Poincaré surface of section. Examples of the methods ability to achieve an early and clear detection of an orbit's behavior are provided using two galactic potentials. The new method can also be applied in order to have an early distinction between ordered and sticky orbits. The method is generalized in order to be used in models with more than two dimensions. Finally we have tried to find an one‐number index to give us the nature of the orbit instead of checking by eye the whole spectrum. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Frequency map analysis of the orbital structure in elliptical galaxies   总被引:1,自引:0,他引:1  
We present an application of the frequency map analysis to an elliptical galaxy which is represented by a generalization of a double-power-law spherical mass model. The density distribution of this model varies as r −γ close to the centre and as r −4 at large radii. We study the case with γ = 1, which is known as the 'weak-cusp' model and which represents well the density profile of the 'core' galaxies observed by the Hubble Space Telescope . The final objective of our work is to improve our understanding of the dynamics of elliptical galaxies in a similar way to Merritt &38; Fridman, finding the regions of stochasticity, looking for resonances that might play an important role in sustaining the triaxial morphology, and analysing the diffusion of orbits. To this end, we use the frequency map analysis of Laskar, which has been applied widely in the field of celestial mechanics but which is a relatively new technique in the area of galactic dynamics. Finally, we show some useful features of this method in understanding the global dynamical structure of the system.  相似文献   

18.
We study spherical and disc clusters in a near-Keplerian potential of galactic centres or massive black holes. In such a potential orbit precession is commonly retrograde, that is, the direction of the orbit precession is opposite to the orbital motion. It is assumed that stellar systems consist of nearly-radial orbits. We show that if there is a loss-cone at low angular momentum (e.g. due to consumption of stars by a black hole), an instability similar to loss-cone instability in plasma may occur. The gravitational loss-cone instability is expected to enhance black hole feeding rates. For spherical systems, the instability is possible for the number of spherical harmonics   l ≥ 3  . If there is some amount of counter-rotating stars in flattened systems, they generally exhibit the instability independent of azimuthal number m . The results are compared with those obtained recently by Tremaine for distribution functions monotonically increasing with angular momentum.
The analysis is based on simple characteristic equations describing small perturbations in a disc or a sphere of stellar orbits highly elongated in radius. These characteristic equations are derived from the linearized Vlasov equations (combining the collisionless Boltzmann kinetic equation and the Poisson equation), using the action-angle variables. We use two techniques for analysing the characteristic equations: the first one is based on preliminary finding of neutral modes, and the second one employs a counterpart of the plasma Penrose–Nyquist criterion for disc and spherical gravitational systems.  相似文献   

19.
We carry out a detailed orbit analysis of gravitational potentials selected at different times from an evolving self-consistent model galaxy consisting of a two-component disc (stars+gas) and a live halo. The results are compared with a pure stellar model, subject to nearly identical initial conditions, which are chosen so as to make the models develop a large-scale stellar bar. The bars are also subject to hose-pipe (buckling) instability which modifies the vertical structure of the disc. The diverging morphological evolution of both models is explained in terms of gas radial inflow, the resulting change in the gravitational potential at smaller radii, and the subsequent modification of the main families of orbits, both in and out of the disc plane.   We find that dynamical instabilities become milder in the presence of the gas component, and that the stability of planar and 3D stellar orbits is strongly affected by the related changes in the potential — both are destabilized, with the gas accumulation at the centre. This is reflected in the overall lower amplitude of the bar mode and in the substantial weakening of the bar, which appears to be a gradual process. The vertical buckling of the bar is much less pronounced and the characteristic peanut shape of the galactic bulge almost disappears when there is a substantial gas inflow towards the centre. Milder instability results in a smaller bulge, the basic parameters of which are in agreement with observations. We also find that the overall evolution in the model with a gas component is accelerated because of the larger central mass concentration and the resulting decrease in the characteristic dynamical time.  相似文献   

20.
A galaxy model with a satellite companion is used to study the character of motion for stars moving in the xy plane. It is observed that a large part of the phase plane is covered by chaotic orbits. The percentage of chaotic orbits increases when the galaxy has a dense nucleus of massMn. The presence of the dense nucleus also increases the stellar velocities near the center of the galaxy. For small values of the distance R between the two bodies, low energy stars display a chaotic region near the centre of the galaxy, when the dense nucleus is present, while for larger values of R the motion in active galaxies is regular for low energy stars. Our results suggest that in galaxies with a satellite companion, the chaotic character of motion is not only a result of galactic interaction but also a result caused by the dense nucleus. Theoretical arguments are used to support the numerical outcomes. We follow the evolution of the galaxy, as mass is transported adiabatically from the disk to the nucleus. Our numerical results are in satisfactory agreement with observational data from M51‐type binary galaxies (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号