首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
融合时空邻近与专题属性相似的时空聚类是挖掘地理现象时空演化规律的重要手段。现有方法需要的聚类参数许多难以获取,影响了聚类方法的可操作性与聚类结果的可靠性。提出一种基于重排检验的时空聚类方法。首先,通过重排检验发现时空数据集中的均质子区域;进而,采用均方误差准则合并均质子区域内的时空实体生成时空簇,并通过簇内重排检验自动识别聚类合并的终止条件;最后,借助时空拓扑关系在保证结果精度的前提下发展一种快速重排检验的方法,提高了聚类方法的运行效率。通过实验和比较发现,该方法一方面可以发现不同形状、大小的时空簇,聚类质量优于经典的ST-DBSCAN方法;另一方面聚类过程中人为设置参数的主观性显著降低,提高了聚类方法的可操作性。  相似文献   

2.
空间聚类方法的分类   总被引:1,自引:0,他引:1  
目前,空间聚类的研究成果主要集中在点目标方面,现有的分类方法也主要针对点目标的聚类.随着空间聚类研究和应用的不断深入,线目标、面目标的空间聚类方法也逐渐被提出,因此本文从空间目标的维度、是否顾及非空间属性、算法思想等3个方面,探讨了空间聚类的分类方法,进而简要阐述每种空间聚类方法的典型算法.  相似文献   

3.
探索建筑物的空间分布模式信息是建筑物地图综合过程中不可或缺的一部分,以建筑物距离为基础,结合建筑物的大小、形状、方向3种特征因子,将多个聚类算法应用于多边形建筑物的聚类分析,并通过不同的城市街区实地数据集对多个聚类算法进行比较分析。结果表明:k-means算法效率最高,但只能识别近似于球形的群组,对呈线性分布的建筑物模式识别效果较差;具有噪声的基于密度的空间聚类(density-basedspatialclusteringofapplicationswithnoise,DBSCAN)算法可以发现任意形状的集群,其对参数的选择过于敏感,难以从复杂的建筑物群中识别出连贯的群组;具有噪声的基于分层的密度聚类(hierarchical DBSCAN,HDBSCAN)算法可以发现任意形状和密度的群组,但对边界区域的建筑物群识别效果较差;最小生成树(minimum spanning tree,MST)算法能够识别出不同类型的建筑物群模式,但难以确定复杂建筑物群的合理划分阈值。  相似文献   

4.
从空间数据场的角度出发,提出了一种基于场论的层次空间聚类算法(简称HSCBFT)。该算法是通过模拟空间实体间的凝聚力来描述空间实体间的相互作用,进而采取层次凝聚的策略进行聚类。通过实验分析可以发现,层次空间聚类算法具有如下优势:①空间聚类簇中各空间实体很好地满足了空间邻近且专题属性相似的要求;②能发现任意形状的空间簇,且具有良好的抗噪性;③输入参数较少。  相似文献   

5.
提出了基于模糊推理的空间聚类方法,给出了其实现步骤,并以实例验证了其可行性和科学性。  相似文献   

6.
为了使得空间聚类分析更加适应实际情况,发展了一种同时顾及空间障碍约束与空间位置邻近的空间聚类方法。该方法采用Delaunay三角网描述实体间的邻近关系,并且不依赖用户指定参数。实验验证了本方法的有效性与优越性。  相似文献   

7.
杨学习  邓敏  石岩  唐建波  刘启亮 《测绘学报》2018,47(9):1250-1260
空间异常探测旨在从海量空间数据中挖掘不符合普适性规律、表现出“与众不同”特性的空间实体集合,对于揭示地理现象的特殊发展规律具有重要价值。现有研究在空间异常度量方面取得了重要进展,但多缺乏对空间异常模式显著性的统计判别,且是针对单一类别数据,没有顾及多类别数据间的相互影响。为此,本文基于空间随机过程的思想,针对两种类别空间点数据,提出了一种空间交叉异常显著性判别的非参数检验方法。首先,针对基本数据集实体,采用约束Delaunay三角网,构建合理、稳定的空间邻近域;然后,统计落在基本数据集实体空间参考邻域半径范围内的参考数据集实体的数目,度量初始异常度;进而,采用α-Shape法构建支撑域,以空间随机过程为基础构建零模型,采用蒙特卡洛模拟检验空间异常的显著性;最后,采用生存距离对异常模式的稳定性进行评价分析。通过试验分析与比较发现,该方法能够有效识别具有统计显著性的空间交叉异常。  相似文献   

8.
一种基于多约束的空间聚类方法   总被引:2,自引:2,他引:2  
刘启亮  邓敏  石岩  彭东亮 《测绘学报》2011,40(4):509-516
借助Delaunay三角网构建空间邻近关系的优势,通过施加不同层次、不同类型的约束,提出一种空间聚类的新方法。通过试验分析与比较发现,该算法可以探测复杂结构的空间簇,对噪声点稳健,并且能够同时顾及实体间空间位置与专题属性的相似性。  相似文献   

9.
杨帆  米红 《测绘科学》2007,32(Z1):66-69
区域划分是依据人口和社会经济指标将行政统计单元或其他地理实体划分成若干个不同水平或类别的集合。由于大多数的人口和社会经济指标来源于面状数据-行政统计单元,常用的区域划分的空间聚类方法是基于面状数据的,本文通过分析现有面状数据的聚类算法特点和不足,进而提出一种新的算法,该方法提出将面状统计单元进行网格划分,引入基于网格密度聚类算法的思想,克服现有面状聚类的诸多缺点,打破行政区划的限制,更好地发现潜在信息。  相似文献   

10.
基于场论的空间聚类算法   总被引:1,自引:0,他引:1  
邓敏  刘启亮  李光强  程涛 《遥感学报》2010,14(4):702-717
从空间数据场的角度出发,提出了一种适用于空间聚类的场——凝聚场,并给出了一种新的空间聚类度量指标(即凝聚力)。进而,提出了一种基于场论的空间聚类算法(简称FTSC算法)。该算法根据凝聚力的矢量计算获取每个实体的邻近实体,通过递归搜索的策略,生成一系列不同的空间簇。通过模拟实验验证、经典算法比较和实际应用分析,发现所提出的算法具有3个方面的优势:(1)不需要用户输入参数;(2)能够发现任意形状的空间簇;(3)能够很好适应空间数据分布不均匀的特性。  相似文献   

11.
何占军  刘启亮  邓敏  蔡建南 《测绘学报》2016,45(11):1335-1341
空间同位模式挖掘对于揭示地理现象间的共生、依赖规律具有重要价值。然而,空间同位模式挖掘中参数阈值缺乏先验知识,若设置不合理,挖掘结果中会遗漏重要的模式或包含冗余的、甚至错误的模式。为此,本文提出了一种基于模式重建的显著空间同位模式多尺度挖掘方法。首先,定义了互邻近距离指标,该指标可用来确定距离阈值的有效取值范围。进而,以模式重建为基础构建零模型,借助统计检验的方法来发现显著的空间同位模式,从而避免了兴趣度阈值的设置。最后,对空间同位模式进行多尺度挖掘,并引入生存期的概念对同位模式多尺度挖掘结果进行有效性评价。试验结果表明:本文方法可有效降低算法参数设置的主观性,从而提升空间同位模式挖掘结果的准确性和稳健性。  相似文献   

12.
空间同位模式挖掘旨在从空间数据中发现频繁发生在邻近位置的事件集合,对于揭示地理现象间的共生规律具有重要价值。由于地理现象的空间异质特质,空间同位模式也存在区域性分异的特点,在不同空间层次上的分析结果各异。然而,现有方法仅从全局视角挖掘空间同位模式,发现局部空间同位模式依然是一个亟待解决的难题。为此,本文基于由整体到局部的思想,提出了一种多层次空间同位模式自适应挖掘方法。首先,从全局视角提取频繁的空间同位模式,将全局不频繁的空间同位模式作为候选的局部空间同位模式;然后,通过对候选局部同位模式进行自适应聚类自动识别其局部分布区域,并在这些局部区域内度量候选模式的频繁程度;进而,提出了一种叠置推绎的方法,从频繁子模式的局部区域中进一步推绎获得超模式的局部分布区域,最终生成所有频繁的局部空间同位模式集合。通过试验分析与比较发现,本文方法不仅可以发现全局的空间同位模式,还能有效提取具有区域性分布特征的局部空间同位模式,可以从多个空间层次上反映地理事件间的共生规则。  相似文献   

13.
郭庆胜  魏智威  王勇  王琳 《测绘学报》2017,46(5):631-638
建筑物群综合过程中需要对建筑物群空间分布特征进行认知和识别。本文在分析国内外相关研究的基础上,从描述建筑物空间特征的大量指标中,利用主成份分析方法,总结并提出了有代表性的建筑物空间特征指标集:凸包面积、紧密度IPQ指标、边数和最小面积外接矩形方向,并基于这些指标研究了建筑物群的分类。在利用最小生成树邻近图(MST)划分建筑物空间子群时,考虑了建筑物成群与所处地理环境(河流和道路等因素)的关系。另外,基于最邻近图(NNG)、MST、相对邻近图(RNG)和Gabriel图(GG)4种建筑物群邻近图,提出了自动识别具有特定空间排列建筑物子群的方法,并比较分析了识别结果的影响因素和可用性。最后,选择北京某地区建筑物群为试验对象,实现了对建筑物群的分类和空间聚类,并提取了其中直线型空间排列的建筑物子群。  相似文献   

14.
提出了一种融合图论与密度思想的空间聚类方法——HGDSC。该方法首先借助附加约束的Delau-nay三角网来建立空间实体之间的邻接关系,然后对基于密度的聚类方法进行改进,顾及空间邻近与非空间属性相似性进行聚类。特别地,该方法只需要一个输入参数。模拟数据和实际数据验证表明,HGDSC方法能够发现任意形状和密度变化的空间簇,并且可以很好地识别噪声点。  相似文献   

15.
基于模糊划分中存在的分类不确定性因素和空间数据的空间位置特征,提出了一种新的空间数据模糊聚类有效性函数。实验结果表明,这种新的有效性函数能够对模糊聚类结果的有效性进行正确的评价,特别是对于空间数据模糊聚类有效性评价,其分类效果较理想,同其他有效性指标相比,能得到较优的分类数。  相似文献   

16.
一种适应局部密度变化的空间聚类方法   总被引:3,自引:1,他引:3  
研究一种适应空间局部密度变化的空间聚类算法(简称ADBSC).在该算法中,首先提出一种新的空间局部密度度量方法,即k-空间近邻最大距离,而为了表达空间局部密度变化特征,引入距离变化率概念,用于度量邻近目标间空间局部密度变化情况.然后将所有空间邻近的距离变化率小于给定变化率阈值的空间目标标记为局部密度相等,再将空间邻近的局部密度相等的空间目标聚为一类,得到空间聚类结果.并给出ADBSC算法的详细描述和计算过程.最后,通过模拟实验和实际算例,对提出的方法进行验证.结果表明,该算法能够自动适应空间位置的局部密度变化,适应不同形态的空间簇,而且比DBSCAN算法更实用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号