首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 9 毫秒
1.
GarcÍa  R.A.  Régulo  C.  Turck-Chièze  S.  Bertello  L.  Kosovichev  A.G.  Brun  A.S.  Couvidat  S.  Henney  C.J.  Lazrek  M.  Ulrich  R.K.  Varadi  F. 《Solar physics》2001,200(1-2):361-379
Data recovered from the GOLF experiment on board the ESA/NASA SOHO spacecraft have been used to analyze the low-order low-degree solar velocity acoustic-mode spectrum below =1.5 mHz (i.e., 1n9,l2). Various techniques (periodogram, RLAvCS, homomorphic-deconvolution and RLSCSA) have been used and compared to avoid possible biases due to a given analysis method. In this work, the acoustic resonance modes sensitive to the solar central region are studied. Comparing results from the different analysis techniques, 10 modes below 1.5 mHz have been identified.  相似文献   

2.
3.
Variations of solar total and spectral irradiance are prime solar quantities purported to have an influence on the Earth’s climate. Quantitative estimates of irradiance over as long a time as possible are needed to judge their effectiveness in forcing the climate. In order to do this reliably, first the measured record must be reproduced and a feeling for the physics underlying the irradiance variations must be developed. With the help of this knowledge combined with the available proxy data, reconstructions of irradiance in the past, generally since the Maunder minimum, are attempted. Here a brief introduction to some of the irradiance reconstruction work aiming at irradiance on time scales of days to the solar cycle is given, followed by a brief and incomplete overview of the longer-term reconstructions.  相似文献   

4.
The Spectral Irradiance Monitor (SIM) is a dual Fèry prism spectrometer that employs 5 detectors per spectrometer channel to cover the wavelength range from 200 to 2700 nm. This instrument is used to monitor solar spectral variability throughout this wavelength region. Two identical, mirror-image, channels are used for redundancy and in-flight measurement of prism degradation. The primary detector for this instrument is an electrical substitution radiometer (ESR) designed to measure power levels ∼1000 times smaller than other radiometers used to measure TSI. The four complementary focal plane photodiodes are used in a fast-scan mode to acquire the solar spectrum, and the ESR calibrates their radiant sensitivity. Wavelength control is achieved by using a closed loop servo system that employs a linear charge coupled device (CCD) in the focal plane. This achieves 0.67 arcsec control of the prism rotation angle; this is equivalent to a wavelength positioning error of δλ/λ = 150 parts per million (ppm). This paper will describe the scientific measurement requirements used for instrument design and implementation, instrument performance, and the in-flight instrument operation modes.  相似文献   

5.
We present the results using the AutoClass analysis application available at NASA/Ames Intelligent Systems Div. (2002) which is a Bayesian, finite mixture model classification system developed by Cheeseman and Stutz (1996). We apply this system to Mount Wilson Solar Observatory (MWO) intensity and magnetogram images and classify individual pixels on the solar surface to calculate daily indices that are then correlated with total solar irradiance (TSI) to yield a set of regression coefficients. This approach allows us to model the TSI with a correlation of better than 0.96 for the period 1996 to 2007. These regression coefficients applied to classified pixels on the observed solar surface allow the construction of images of the Sun as it would be seen by TSI measuring instruments like the Solar Bolometric Imager recently flown by Foukal et al. (Astrophys. J. 611, L57, 2004). As a consequence of the very high correlation we achieve in reproducing the TSI record, our approach holds out the possibility of creating an on-going, accurate, independent estimate of TSI variations from ground-based observations which could be used to compare, and identify the sources of disagreement among, TSI observations from the various satellite instruments and to fill in gaps in the satellite record. Further, our spatially-resolved images should assist in characterizing the particular solar surface regions associated with TSI variations. Also, since the particular set of MWO data on which this analysis is based is available on a daily basis back to at least 1985, and on an intermittent basis before then, it will be possible to estimate the TSI emission due to identified solar surface features at several solar minima to constrain the role surface magnetic effects have on long-term trends in solar energy output.  相似文献   

6.
Kumar  Brajesh  Jain  Rajmal  Tripathy  S.C.  Vats  Hari Om  Deshpande  M.R. 《Solar physics》2000,191(2):293-307
A time series of GONG Dopplergrams for the period 10–14 May 1997 from Udaipur and Big Bear sites has been used to measure the velocity fluctuations in a sunspot (NOAA active region 8038) and quiet photosphere simultaneously. We observe that the power of pre-dominant p mode is reduced in the sunspot as compared to quiet photosphere by 39–52% depending on the location of the sunspot region on the solar disk. We also observe a relative peak frequency deviation of p modes in the sunspot, of the order of 80–310 Hz, which shows a linear dependence on the magnetic field gradient in the active region. The maximum frequency deviation of 310 Hz on 12 May appears to be an influence of a long-duration solar flare that occurred in this active region. We interpret this relative peak frequency deviation as either due to power re-distribution of p modes in the sunspot or a consequence of frequency modulation of these modes along the magnetic flux tubes due to rapidly varying magnetic field structure.  相似文献   

7.
The GOLF experiment on the SOHO mission aims to study the internal structure of the Sun by measuring the spectrum of global oscillations in the frequency range 10-7 to 10-2 Hz. Here we present the results of the analysis of the first 8 months of data. Special emphasis is put into the frequency determination of the p modes, as well as the splitting in the multiplets due to rotation. For both, we show that the improvement in S/N level with respect to the ground-based networks and other experiments is essential in achieving a very low-degree frequency table with small errors ∼ 2 parts in 10-5). On the other hand, the splitting found seems to favour a solar core which does not rotate slower than its surface. The line widths do agree with theoretical expectations and other observations.  相似文献   

8.
We use the method of time – distance analysis to measure lifetimes of solar p modes in the range =100 − 600 and ν=3.0 − 4.5 mHz with data taken with the Taiwan Oscillation Network (TON). The lifetimes of p modes are determined by the changes in the amplitude and width of the cross-correlation function of a wave packet with the number of skips. The amplitude of the cross-correlation function decreases exponentially with the number of skips as in previous work. This decrease has been interpreted as the effect of the finite p-mode lifetime. In this study, we find that the width of the cross-correlation function increases with the number of skips. We interpret this phenomenon as the effect of the dispersion of the wave packet. We include this effect in the determination of the lifetime of the wave packet. The lifetime increases after the dispersion is taken into account. We also study the change in lifetime between solar minimum and maximum.  相似文献   

9.
本文提出分段零平均方法,引用点间加零方法,利用周期图以及自相关功率谱,对八十年代美国SMM卫星所采集的太阳总辐照度资料中1980年与1984年的两段数据做太阳振荡谱分析,对频谱进行等步长叠加证认的结果,除了得出l=0,1,2等低阶声模以外,还清楚地得出了以在对SMM资料的研究所未得到的l=3声波模式,而由相干及谱峰半宽,推出了低阶声模的相干时间即激发寿命近似为3至9天.另外,比较1980年与1984年两段数据的分析结果,发现太阳活动峰年1980年的模式频率比谷年1984年高出零点几至几个微赫兹(μHz),这意味着太阳短周期的振荡受长周期磁场变化的影响.  相似文献   

10.
The solar irradiance data plays a very important role for understanding of Solar internal Structure and the solar terrestrial relationships. The Total Solar Irradiance (TSI) is integrated solar energy flux over the entire spectrum which arrives at the top of the atmosphere at the mean sun earth distance. TSI has been monitored from several satellites, e.g. Nimbus 7, Solar Maximum Mission (SMM), The NASA, Earth Radiation Budget Satellite (ERBS), NOAA9, NOAA10, Eureca and the Upper Atmospheric Research Satellite (UARS) etc. From these observations it reveals that the total solar irradiance varies about a small fraction of 0.1 over solar cycle being higher during maximum solar activity condition. In the present paper we have analysed the solar irradiance data from ERBS during the time period from October 15, 1984 to October 15, 2003. First filtering the data by Simple Exponential Smoothing we have applied the Rayleigh Power Spectrum Analysis on the processed data in order to search for its time variation. Study exhibits multi-periodicities on these data around 7, 11, 42, 80, 104, 130, 160, 254, 536, 752, 1142, 1388, 2474 and 4951 days with very high confidence levels (more than 95%). Apart from these strong periods there are some other weak periods around 22, 47, 53, 67, 69, 149, 167, 365, 489 and 683 days. These periods are significantly similar with the periods of other solar activities which may suggest that solar irradiance may be associated with other solar activities.  相似文献   

11.
The three helioseismology instruments aboard SOHO observe solar p modes in velocity (GOLF and MDI) and in intensity (VIRGO and MDI). Time series of two months duration are compared and confirm that the instruments indeed observe the same Sun to a high degree of precision. Power spectra of 108 days are compared showing systematic differences between mode frequencies measured in intensity and in velocity. Data coverage exceeds 97% for all the instruments during this interval. The weighted mean differences (V-I) are −0.1 μHz for l=0, and −0.16 μHz for l=1. The source of this systematic difference may be due to an asymmetry effect that is stronger for modes seen in intensity. Wavelet analysis is also used to compare the shape of the forcing functions. In these data sets nearly all of the variations in mode amplitude are of solar origin. Some implications for structure inversions are discussed.  相似文献   

12.
Crouch  A.D.  Cally  P.S. 《Solar physics》2003,214(2):201-226
Sunspots absorb incident p modes. The responsible mechanism is uncertain. One possibility is mode conversion to slow magnetoacoustic–gravity waves. In vertical field mode conversion can adequately explain the observed f-mode absorption, but is too inefficient to explain the absorption of p modes. In this investigation we calculate the efficiency of fast-to-slow magnetoacoustic–gravity wave conversion in non-vertical field. We assume two-dimensional propagation where the Alfvén waves decouple. It is found that resultant p-mode absorption is significantly enhanced for moderate inclinations at higher frequencies, whereas for p modes at lower frequencies, and the f mode in general, there is no useful enhancement. However, the enhancement is insufficient to explain the observed p-mode absorption by sunspots. Paper II considers the efficiency of mode conversion in non-vertical field with three-dimensional propagation, where fast and slow magnetoacoustic–gravity waves and Alfvén waves are coupled.  相似文献   

13.
We study the North–South asymmetry of zonal and meridional components of horizontal, solar subsurface flows during the years 2001–2004, which cover the declining phase of solar cycle 23. We measure the horizontal flows from the near-surface layers to 16 Mm depth by analyzing 44 consecutive Carrington rotations of Global Oscillation Network Group (GONG) Doppler images with a ring-diagram analysis technique. The meridional flow and the errors of both flow components show an annual variation related to the B 0-angle variation, while the zonal flow is less affected by the B 0-angle variation. After correcting for this effect, the meridional flow is mainly poleward but it shows a counter cell close to the surface at high latitudes in both hemispheres. During the declining phase of the solar cycle, the meridional flow mainly increases with time at latitudes poleward of about 20˚, while it mainly decreases at more equatorward latitudes. The temporal variation of the zonal flow in both hemispheres is significantly correlated at latitudes less than about 20˚. The zonal flow is larger in the southern hemisphere than the northern one, and this North–South asymmetry increases with depth. Details of the North–South asymmetry of zonal and meridional flow reflect the North–South asymmetry of the magnetic flux. The North–South asymmetries of the flows show hints of a variation with the solar cycle.  相似文献   

14.
Den Hartog  E. A.  Curry  J. J.  Wickliffe  M. E.  Lawler  J. E. 《Solar physics》1998,178(2):239-244
We report spectroscopic measurements on the 6s6p 3P1 level of Lu+ at 28503.16 cm-1. The radiative lifetime of this level was measured to be 37.4 ± 1.9 ns using time-resolved laser-induced fluorescence of a slow ion beam. Branching fractions were determined from Lu spectra recorded using the 1.0 m Fourier transform spectrometer at the National Solar Observatory. Thelog(gf) values determined by combining the radiative lifetime and branching fractions for the 3507.39, 5983.90, and 6221.87 (air wavelengths) lines are - 1.16 ± 0.03, - 1.16 ± 0.06, and -0.76 ± 0.04, respectively. The 6221.87 line has been identified by Bord, Cowley, and Mirijanian (1997) as the best candidate for the determination of the solar lutetium abundance because it is only slightly blended in the solar spectrum. The present 6221.87 transition probability measurement brings their solar lutetium abundance into good agreement with the CI chondrite abundance.  相似文献   

15.
The cross-correlation function of solar p modes in a time – distance analysis changes with travel distance (or travel time). The exponential decrease in the amplitude of the cross-correlation function with travel distance has been interpreted as the dissipation of solar p-mode power and used to determine the lifetimes of high-degree p modes. It is found that the width of the cross-correlation function increases with travel distance. We interpret the increase in width as the dispersion of the wave packet in a time – distance analysis. The dispersion would also cause a decrease in amplitude and affect the determination of lifetimes. We include the dispersion effect in the determination of lifetimes of high-degree p modes in a time – distance analysis and find that the derived lifetime increases significantly compared with the previous study for degree less than 400.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号